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Nuclear fusion confinement

Goal : Confine a plasma of approx. 150 millions K for as long as
possible with a density as high as possible in order to achieve fusion
ignition.

Solution : A plasma is a made of ionized particules, thus interacts
with a magnetic field.

Figure: magnetic field lines inside a Tokamac, Inria team TONUS
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Stellarators

Stellarator approach : The magnetic confinement relies mainly on external
coils.

Figure: Wendelstein 7-X, Max-Planck Institut für Plasmaphysik

The plasma shape and the coils are obtained by several optimizations.
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Typical approach

1 Find a good magnetic field to ensure the plasma confinement. On the
Plasma boundary, Btarget is tangent to the surface. This surface
characterizes (nearly) entirely the magnetic field.

2 We use a ’Coil winding surface’ and find a current-sheet to generate
the given Btarget .

3 (Approximate the current-sheet by several coils)

Figure: Coil winding surface and plasma surface of the NCSX Stellarator.
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B is (in good approximation) only generated by electric currents on the
CWS (denoted S).

Biot-Savart law in vacuo

∀y 6∈ S ,B(y) = BS(j)(y) =

ˆ
S
j(x)× y − x

|y − x |3
dS(x), (1)

The figure of merit we use to ensure B ≈ Btarget is

plasma-shape objective

χ2
B =

ˆ
SP

〈B(x) · n(x)〉2dS(x). (2)

For a nice closed affine subspace E of L2(X(S))

Inverse problem

inf
j∈E

χ2
B (P)
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An inverse problem

BS(·) is continuous from L2(X(S))→ C k(SP ,R3)
=⇒ j 7→ 〈BS(j) · n〉 is compact (from L2(X(S))→ L2(SP)).

Use a finite dimensional subspace for the space of vector field to solve
the problem and use the dimension as a regularization parameter. See
NESCOIL [3].
Use a Tychonoff regularization λχ2

j to ensure existence of the
minimizer. This is done in REGCOIL code [2].

χ2
j =

ˆ
S
|j |2dS . (3)

Lemma

For any λ > 0, the problem

inf
j∈E

χ2
B + λχ2

j (P)

admit a unique minimizer.
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About Poisson equation and some cohomology

Let P a full 3D torus

Ω0(P)

Id
��

d // Ω1(P)

#

��

d // Ω2(P)

β−1

��

d // Ω3(P)

∗
��

C∞(P)
grad // X(P)

curl // X(P)
div // C∞(P)

b0 = 1, b1 = 1, b2 = 0. As b1 = 1, Dim Ker curl /Im grad = 1. Besides by
Hodge decomposition there exists X ∈ X(S) such that

X 6∈ Im(grad)

curlX = 0

divX = 0

e.g. X = eθ
r
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curlB = 0 on P =⇒ ∃f ∈ C∞(P), ∃ν > 0, s.t. B = grad f + νX . (4)

Let Γ be a loop of index 1 and SΓ any surface enclosed by Γ. The line
integral of B along Γ is given by the total poloidal current Ip =

˜
SΓ

j · ~da.

Ip =

˛
Γ
B · ~dl =

˛
Γ
(grad f + νX ) · ~dl = ν

˛
Γ
X · ~dl (5)

Thus for a given Sp, Ip → ν.

divB = 0 =⇒ ∆f = 0 in P (6)

B · n = 0 on SP = ∂P =⇒ ∂nf + ν〈X · n〉 = 0 in ∂P (7)
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About divergence-free vector field on a 2D manifold

Divergence-free vector field on a flat Torus

Let T = (R/Z)2 the flat torus with cartesian parametrization (θ, ϕ). Let
X ∈ X(T ), then the following proposition are equivalent:

divX = 0

∃Φ ∈ C∞(T ), ∃(p, q) ∈ R2, s.t. X = ∇⊥Φ + p∂θ + q∂ϕ

with ∇⊥Φ = ∂f
∂θ∂ϕ −

∂f
∂ϕ∂θ

In practice, we fix p and q and look for Φ which we developped on Fourier
series.
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Preservation of divergence-free vector field

Let ψ : T → S ⊂ R3 a diffeomorphism, and

ψ̃ :X(T )→ X(S) (7)

X 7→ dψX

|dψ∂θ ∧ dψ∂ϕ|
(8)

Then ψ̃ is a diffeomorphism between {X ∈ X(T ) | divX = 0} and
{X ∈ X(S) | divX = 0}

Figure: poloidal (red, θ) and toroidal (blue, ϕ).
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Motivations

Building a Stellarator is expensive. . .

compact Stellarators require higher magnetic field

Higher magnetic fields call for higher currents

=⇒ The Laplace forces ( ~dF = i ~dl ∧ ~B) grew quadratically.

=⇒ The Laplace forces must be optimized.

Problem

How can we define the Laplace forces on a current-sheet?
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Statement of the problem

Let S a toroidal surface and j ∈ X(S) a vector field.

Biot and Savart

∀y 6∈ S ,B(y) = BS(j)(y) =

ˆ
S
j(x)× y − x

|y − x |3
dS(x),

Not integrable

B is not defined on S , indeed for any y ∈ S ,

ˆ
S

1

|x − y |2
dx =∞

There is a magnetic discontinuity on the surface given by

B1
T − B2

T = n12 ∧ j .
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About the Laplace forces

B does not blow up near S .

The discontinuity of B is responsible for a normal force proportional
to |j |2 trying increase the thickness of S.

Average Laplace forces

We focus on the other contributions of the Laplace forces, and therefore
we define:

Lε(j)(y) =
1

2
(j ∧

[
B(j)(y + εn(y)) + B(j)(y − εn(y))

]
)

L(j) = lim
ε→0

Lε(j)
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This definition raises several questions:

1 Under which assumptions on j can we ensure that L(j) is well defined?

2 Can we find an explicit expression of L(j) (i.e. without a limit on ε)?

3 Which functional space does L(j) belong to (for j in a given
functional space)?

A 3 scales problem

To compute L from Lε, we need 3 scales :

1 the discretisation-length of S : h,

2 the infinitesimal displacement ε,

3 the characteristic distance of variation of the magnetic field, dB .

With :

h� ε as
´
S |y + εn(y)− x |−2dS(x) blows up when ε→ 0.

ε� dB to approximate L.
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Theorem

Theorem

Suppose j1, j2 ∈ X1,2(S), then Lε(j1, j2) has a limit in Lp(S ,R3) for any
1 ≤ p <∞ when ε→ 0, denoted L(j1, j2). Besides, L is a continuous
bilinear map X1,2(S)× X1,2(S)→ Lp(S ,R3) given by

L(j1, j2)(y) =−
ˆ
S

1

|y − x |
[

divx(πx j1(y)) + πx j1(y) · ∇x

]
j2(x)dx (9)

+

ˆ
S
〈j1(y) · n(x)〉〈y − x , n(x)〉

|y − x |3
j2(x)dx (10)

+

ˆ
S

1

|y − x |
[
〈j1(y) · j2(x)〉 divx(πx) +∇x〈j1(y) · j2(x)〉

]
dx

(11)

−
ˆ
S
〈j1(y) · j2(x)〉〈y − x , n(x)〉

|y − x |3
n(x)dx (12)
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Some ideas of the proof

Use A ∧ (B ∧ C ) = (A · C )B − (A · B)C

Note that y−x
|y−x |3 = −∇x

1
|y−x | .

Do an integration by part on the tangential component of the
gradient.

Use some estimates when ε is small to eliminate the part responsible
for the magnetic discontinuity.

Tools : Hardy-Littlewood-Sobolev inequality and Sobolev embeding
on compact manifold [1].
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Lε(j1, j2)(y) =

ˆ
S
〈j1(y) · ( y − x + εn(y)

2|y − x + εn(y)|3
+

y − x − εn(y)

2|y − x − εn(y)|3
)〉j2(x)dx

−
ˆ
S
〈j1(y) · j2(x)〉( y − x + εn(y)

2|y − x + εn(y)|3
+

y − x − εn(y)

2|y − x − εn(y)|3
)dx .

ˆ
S
〈j1(y) · y − x ± εn(y)

|y − x ± εn(y)|3
〉j2(x)dx (13)

=

ˆ
S
〈j1(y) · ∇x

1

|y − x ± εn(y)|
〉j2(x)dx (14)

=

ˆ
S
〈j1(y) · ∇S

1

|y − x ± εn(y)|
〉j2(x)dx (15)

+

ˆ
S
〈j1(y) · 〈y − x , n(x)〉 ± ε〈n(y), n(x)〉

|y − x ± εn(y)|3
n(x)〉j2(x)dx (16)
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Tangential terms

Integration by partˆ
M

div(f X) = 0 =

ˆ
M

Xf + f div X

ˆ
S

〈j1(y) · ∇S
1

|y − x ± εn(y)| 〉R3 j2(x)dx =

ˆ
S

〈πx j1(y) · ∇S
1

|y − x ± εn(y)| 〉TxS j2(x)dx

(17)

Then, let j i2(x) be the i-th component in R3 of j2. the i-th component of (17) writes
ˆ
S

〈j i2(x)πx j1(y) · ∇S
1

|y − x ± εn(y)| 〉TxSdx (18)

=−
ˆ
S

1

|y − x ± εn(y)| divx(j
i
2(x)πx j1(y))dx (19)

=−
ˆ
S

1

|y − x ± εn(y)|
[
j i2(x) divx(πx j1(y)) + 〈πx j1(y) · ∇j i2(x)〉

]
dx (20)
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normal terms

ˆ
S

〈j1(y) · j2(x)〉 〈y − x , n(x)〉
|y − x ± εn(y)|3

dx ±
ˆ
S

〈j1(y) · j2(x)〉 ε〈n(y), n(x)〉
|y − x ± εn(y)|3

dx (21)

which converges to ˆ
S

〈j1(y) · j2(x)〉 〈y − x , n(x)〉
|y − x |3

dx ,

Lemma

∃C > 0,∀x 6= y ∈ S , |〈y−x,n(x)〉|
|y−x|2 ≤ C .

Lemma

Let fε : S2 \∆ 3 (x , y) 7→ 1
|y−x+εn(y)|3 −

1
|y−x−εn(y)|3 dx . Then ∃η > 0,∃M > 0,

∀α ∈ (−0.5, 3.5),∀ε < η, ∀(x , y), |εαfε(x , y)| ≤ M 1
|x−y |5/2−α .
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Optimization

We introduce the following costs:

χB to ensure that we produce the magnetic field chosen :

χ2
B =

ˆ
P
〈B(x) · n(x)〉2dS(x)

A penalization term on j

χ2
j =

ˆ
S
|j |2dS

χ2
∇j =

ˆ
S

(|∇jx |2 + |∇jy |2 + |∇jz |2)dS .

A penalizing term on the Laplace forces, for example Lp(S ,R3)

χ2
F = |L(j)|Lp =

( ˆ
S
|L(j)|p2

)1/p
dS

Thus, we will minimize the new cost with relative weights λ1, λ2, γ ≥ 0.

χ2 = χ2
B + λ1χ

2
j + λ2χ

2
∇j + γχ2

F
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Lemma

Suppose λ1, λ2, γ > 0 and p <∞ then

inf
j∈E

χ2
B + λ1χ

2
j + λ2χ

2
∇j + γ|L(j)|Lp

admit a minimizer.

We also introduce a cost to penalize only high values of the forces:
Ce =

´
S fe(|L(j)|)
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Case λ1 λ2 γ χ2
F

(T2 m2/A2) (T2 m4/A2) (T2/Pa2)

1 1.5 · 10−16 0 0 0

2 0 0 10−17 |L(j)|2
L2(S,R3)

3 0 0 10−16 Ce

4 10−19 10−19 10−16 Ce

(22)
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Prospects

Optimize our implementation in order to provide a blackbox criteria
which can easily be added to other optimization codes.

Use shape optimization on the CWS to improve the pareto optima.

Thank you for your attention !
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R. Robin (LJLL, Sorbonne Université) On the Laplace forces on a current-sheet. March 26, 2021 28 / 28


	Introduction to Stellarators physics
	Inverse problem
	Laplace forces on a current-sheet
	Optimization

