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Nuclear fusion confinement

@ Goal : Confine a plasma of approx. 150 millions K for as long as
possible with a density as high as possible in order to achieve fusion
ignition.

@ Solution : A plasma is made of ionized particules, thus interacts with
a magnetic field.

Figure: magnetic field lines inside a Tokamac, Inria team TONUS
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Stellarators

Stellarator approach : The magnetic confinement relies mainly on external
coils.

Figure: Wendelstein 7-X, Max-Planck Institut fiir Plasmaphysik

The plasma shape and the coils are obtained by several optimizations.
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Typical approach

@ Find a good magnetic field to ensure the plasma confinement.
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Typical approach

@ Find a good magnetic field to ensure the plasma confinement.

@ We use a 'Coil winding surface’ and find a current-sheet to generate
the given Biarger [4].

\ 4

Figure: Coil winding surface and plasma surface of the NCSX Stellarator.
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Typical approach

@ Find a good magnetic field to ensure the plasma confinement.

@ We use a 'Coil winding surface’ and find a current-sheet to generate
the given Biarger [4].

© (Approximate the current-sheet by several coils)

\ 4

Figure: Coil winding surface and plasma surface of the NCSX Stellarator.
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The magnetic field generated by the electric currents on the CWS
(denoted S).

Biot-Savart law in vacuo

Wy & S, B(y) = BS()(y) = /5 J0)x L2 dsk), (1)

ly —X|3

The figure of merit we use to ensure B ~ Biarget is

plasma-shape objective

BU) = /P IBSG)(y) — Bargee )2y )

The goal

. f 2 . 3
P - xz() (3)
div j=0

A
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An inverse problem

BS(-) is continuous from L2(%(S)) — Ck(0P,R3)
= j+ BS(j) is compact (from L?(X(S)) — L2(P,R3)).

@ Use a finite dimensional subspace [4].

@ Use a Tychonoff regularization [3].

= /5 j2ds. (4)
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Lemma

For any A > 0, the problem
inf  xB+ A7 P
jea(s) BTN &
div,j=0
admits a unique minimizer
Jjs = (A\Id +BSL BSs) ! BSL Br. (5)
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We want to optimize on both the current sheet and the Coil Winding
Surface.

Admissible shapes

@ Topology of a torus
@ Regular enough

@ Far enough to the plasma

Shape optimization problem

inf inf X% : P
5 exin st jeLJFX(s))XB—i_)\XJ (S0P)
divj=0

.

R. Robin (LJLL, Sorbonne Université)  Optimal Shape of Stellarators for Magnetic C December 1st, 2021 10 /26



Previous works

First approach by Paul, Abel, Landreman, Dorland [2019] [5]

e Finite dimensional approach (discretize then optimize)
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Previous works

First approach by Paul, Abel, Landreman, Dorland [2019] [5]
e Finite dimensional approach (discretize then optimize)

@ Regularity of the surface is ensured by non intrinsic cost (Fourier
compression).
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Previous works

First approach by Paul, Abel, Landreman, Dorland [2019] [5]
e Finite dimensional approach (discretize then optimize)

@ Regularity of the surface is ensured by non intrinsic cost (Fourier
compression).

Our contribution
@ Existence of a minimizer of the shape optimisation problem,

@ Computation of the shape gradient in the set of admissible shapes,

@ Numerics based on our approach.

11/26
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Admissible shapes

Constraints on the set of admissible shapes S € Oygm:
© S is a orientable surface homotopic to the usual torus.
Q@ dist(S,P) >4
© S isin included in a compact set
Q 1*(S) < Awm
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Admissible shapes

Constraints on the set of admissible shapes S € Oygm:
© S is a orientable surface homotopic to the usual torus.
Q@ dist(S,P) >4
© S isin included in a compact set
0 1*(S) < Awm
© Lower bound on the reach of S
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[1][Delfour-Zolesio] and [2][1969 Federer]

V C R",Sk(V) is the set of all points in R” whose projection onto V' is
not unique.

Up(V) = {x ]| d(x, V) < h}
Reach(V) = sup{h | Up(V)NSk(V) = 0}
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Theorem[2021, Privat, R. , Sigalotti]

The shape optimisation problem

inf inf X%+ \x? 6
S€O0adm jeLz(ae(S))XB X (6)
div j=0

admits a minimizer.

Key ingredients of the proof :
@ Compactness of Oygm,

@ Lower semicontinuity of the cost.

e Transport j while preserving tangent and divergence free,
e Use a volumic approximation.
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dv(x) = inf [x =y, bv(x) = dv(x) = drayv (x);

Let r be in (0, rmin) and denote by (S,)neny = (OVi)nen a sequence in
Oadm- Then, there exists Sy = OV € Oagm such that, up to a
subsequence,

o by, isin €1 (U,(Sx)) and (by,)nen converges to by, in

G (Ur(Se0));
o (by,)nen converges to by, in €(D);
o (ds,)nen converges to ds__ in €(D);
o (H2(S,))nen converges to H#%(S).
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Shape gradient tool

o Let 0 € W2>°(R3,R3) be a perturbations.
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Shape gradient tool

o Let 0 € W2>°(R3,R3) be a perturbations.
@ ¢ = Id+e6 induces a diffeomorphism from S to 5¢
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Shape gradient tool

o Let 0 € W2>°(R3,R3) be a perturbations.

@ ¢° = Id+¢6 induces a diffeomorphism from S to S¢
C(s9)=¢(S)

@ We want to study lim¢_g 6
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Shape gradient tool

o Let 0 € W2>°(R3,R3) be a perturbations.
@ ¢ = Id+e6 induces a diffeomorphism from S to 5¢

e We want to study |ime—>ow
[~
b = g (Sus)+ i e (Sis).
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Shape gradient tool

o Let 0 € W2>°(R3,R3) be a perturbations.
@ ¢ = Id+e6 induces a diffeomorphism from S to 5¢

@ We want to study lim¢_g M
°
9C(S,js) oC ... 9Cajs,. .
e The differential of ¢ = Id +&6 provides a diffeomorphism from X(S)
to X(5°).
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Shape gradient tool

o Let 0 € W2>°(R3,R3) be a perturbations.
©® = Id +¢6 induces a diffeomorphism from S to S¢

@ We want to study lim¢_g M
°
9C(S,js) oC ... 9Cajs,. .
e The differential of ¢ = Id +&6 provides a diffeomorphism from X(S)
to X(5°).

@ Nevertheless the range of ﬂg by ¢® does not coincide with ﬁgg.
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Shape gradient tool

o Let 0 € W2>°(R3,R3) be a perturbations.
©® = Id +¢6 induces a diffeomorphism from S to S¢

@ We want to study lim¢_g M
°
9C(S,js) oC ... 9Cajs,. .
e The differential of ¢ = Id +&6 provides a diffeomorphism from X(S)
to X(5°).

@ Nevertheless the range of ﬂg by ¢® does not coincide with ﬁgg.

O° L Fs — Fse
1
X — Id+eDO)X o p~*¢
[J(ps, u3)ee] o sO‘E( )
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Shape gradient

Zo(k) = /P K(-1y) % k(y) dup(y)

)
Zo(k)0) = [ D: (X‘y) (k(y) % j())dpply).  VxeS.

Ix —y3

For every § € W?2°°(R3,R3) one has

(dC(S),0) = / 0 (X — divs(Xa):) dyis (7)
S
where
X1 = —2Zp(BSs js — BT, js) (8)
Xo = —2Zp(BSs js — BT)jd 4+ 2\jsjid — Ajs|>(k —vvT), (9)

where for i € {1,2,3}, (X2);. denotes the i-th line of X, seen as a column
vector, and v denotes the outward normal vector on S = 0V.
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Numerical results for A = 2.5¢16

Name X2B Bli|es XZ oo EMcost

J
ref |4.80-1073[5.15-10"2|1.43-10™ [ 7.42-10°| 4.06- 102
DPC [1.23-1073[3.20-1072[9.48-10%3 [ 5.99-10° | 2.49.102

Name | Distance (m) | Perimeter (m?) | Maximal curvature (m™1)
Ref | 1.92-107! 5.57 - 10! 1.19 - 10*
DPC | 1.99-10"* 5.60 - 10! 1.30 - 10*
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After optimization
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@ Collaboration with Renaissance fusion for industrial applications,

@ Use more complex costs in the shape optimisation.

Thank you for your attention !
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Cohomology and divergence free vector fields on the torus

Hodge decomposition

On a closed Riemannian manifold M

L2(M) = B, ® B} & H;,

where
e B, is the L2-closure of {da | a € QP~H(M)},
o By is the [*-closure of {d*3 | B € QPF!(M)} (d* is the coderivative),

o J, is the set {w € QP(M) | Ayw = 0} of harmonic p-forms with Ay
the Hodge Laplacian.

v

Thus for a flat Torus T, we only need to characterizes By (T) and (7).
o Bj(T) is the L2-closure of the 1-forms g—fl’dv — g—?du for ® € €>=(T).

e J4(T) is a two-dimensional vector space as by = 2.
<%i(-r) = {)\1du + Apdv | ()\1, )\2) S RZ}_
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In vacuo Maxwell equations on a toroidal 3D domain

Let P a be toroidal domain. Let I' be a toroidal loop inside P and denote
by I, the electric current-flux across any surface enclosed by I (also equal
to the circulation of B along ).

Lemma

Let B € C*°(P,R3) such that divB = 0 and curl B =0 in P.

Let g be the normal magnetic field on OP. Then g and |, determine
completely the magnetic field B in P. Besides, there exists a constant

C > 0 such that for every other magnetic field B with the same total
poloidal currents, |B — E\Lz(pRa) < Clg — &l12(op) where g is the normal

oP-

component of B

Idea: consider the cochain complex

@o(P) £2% goo(p,R3) Ui oo (p, R3) —IVa oo(p).
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