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Nuclear fusion confinement

Goal : Confine a plasma of approx. 150 millions K for as long as
possible with a density as high as possible in order to achieve fusion
ignition.

Solution : A plasma is made of ionized particules, thus interacts with
a magnetic field.

Figure: magnetic field lines inside a Tokamac, Inria team TONUS
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Stellarators

Stellarator approach : The magnetic confinement relies mainly on external
coils.

Figure: Wendelstein 7-X, Max-Planck Institut für Plasmaphysik

The plasma shape and the coils are obtained by several optimizations.
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Typical approach

1 Find a good magnetic field to ensure the plasma confinement.

2 We use a ’Coil winding surface’ and find a current-sheet to generate
the given Btarget [4].

3 (Approximate the current-sheet by several coils)

Figure: Coil winding surface and plasma surface of the NCSX Stellarator.
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The magnetic field generated by the electric currents on the CWS
(denoted S).

Biot-Savart law in vacuo

∀y 6∈ S ,B(y) = BS(j)(y) =

ˆ
S
j(x)× y − x

|y − x |3
dS(x), (1)

The figure of merit we use to ensure B ≈ Btarget is

plasma-shape objective

χ2
B(j) =

ˆ
P
|BS(j)(y)− Btarget(y)|2dy (2)

The goal

inf
j∈L2(X(S))

div j=0

χ2
B(j) (3)
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An inverse problem

BS(·) is continuous from L2(X(S))→ C k(∂P,R3)
=⇒ j 7→ BS(j) is compact (from L2(X(S))→ L2(P,R3)).

Use a finite dimensional subspace [4].

Use a Tychonoff regularization [3].

χ2
j =

ˆ
S
|j |2dS . (4)
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Lemma

For any λ > 0, the problem

inf
j∈L2(X(S))

div j=0

χ2
B + λχ2

j (P)

admits a unique minimizer

jS = (λ Id + BS†S BSS)−1 BS†S BT . (5)
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We want to optimize on both the current sheet and the Coil Winding
Surface.

Admissible shapes

Topology of a torus

Regular enough

Far enough to the plasma

Shape optimization problem

inf
S admissible

 inf
j∈L2(X(S))

div j=0

χ2
B + λχ2

j

 (SOP)
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Previous works

First approach by Paul, Abel, Landreman, Dorland [2019] [5]

Finite dimensional approach (discretize then optimize)

Regularity of the surface is ensured by non intrinsic cost (Fourier
compression).

Our contribution

Existence of a minimizer of the shape optimisation problem,

Computation of the shape gradient in the set of admissible shapes,

Numerics based on our approach.
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Admissible shapes

Constraints on the set of admissible shapes S ∈ Oadm:

1 S is a orientable surface homotopic to the usual torus.

2 dist(S ,P) ≥ δ
3 S is in included in a compact set

4 H2(S) ≤ AM
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Admissible shapes

Constraints on the set of admissible shapes S ∈ Oadm:

1 S is a orientable surface homotopic to the usual torus.

2 dist(S ,P) ≥ δ
3 S is in included in a compact set

4 H2(S) ≤ AM

5 Lower bound on the reach of S
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Reach

[1][Delfour-Zolesio] and [2][1969 Federer]
V ⊂ Rn, Sk(V ) is the set of all points in Rn whose projection onto V is
not unique.

Uh(V ) = {x | d(x ,V ) < h}

Reach(V ) = sup{h | Uh(V ) ∩ Sk(V ) = ∅}
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Reach

Theorem[2021, Privat, R. , Sigalotti]

The shape optimisation problem

inf
S∈Oadm

inf
j∈L2(X(S))

div j=0

χ2
B + λχ2

j (6)

admits a minimizer.

Key ingredients of the proof :

Compactness of Oadm,

Lower semicontinuity of the cost.

Transport j while preserving tangent and divergence free,
Use a volumic approximation.
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Compactness

dV (x) = inf
y∈V
|x − y |, bV (x) = dV (x)− dR3\V (x);

Let r be in (0, rmin) and denote by (Sn)n∈N = (∂Vn)n∈N a sequence in
Oadm. Then, there exists S∞ = ∂V∞ ∈ Oadm such that, up to a
subsequence,

bV∞ is in C 1,1(Ur (S∞)) and (bVn)n∈N converges to bV∞ in
C 1(Ur (S∞));

(bVn)n∈N converges to bV∞ in C (D);

(dSn)n∈N converges to dS∞ in C (D);

(H 2(Sn))n∈N converges to H 2(S∞).
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Shape gradient tool

Let θ ∈W 2,∞(R3,R3) be a perturbations.

ϕε = Id +εθ induces a diffeomorphism from S to Sε

We want to study limε→0
C(Sε)−C(S)

ε

∂C̃ (S , jS)

∂S
=
∂C̃

∂S
(S , jS) +

∂C̃

∂j

∂jS
∂S

(S , jS).

The differential of ϕε = Id +εθ provides a diffeomorphism from X(S)
to X(Sε).

Nevertheless the range of F 0
S by ϕε does not coincide with F 0

Sε .

Φε : FS −→ FSε

X 7−→ 1

[J(µS , µ
ε
S)ϕε] ◦ ϕ−ε

(Id +εDθ)X ◦ ϕ−ε
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Shape gradient

ZP(k) =

ˆ
P
K (·, y)× k(y) dµP(y)

ẐP(k , j)(x) =

ˆ
P
Dx

(
x − y

|x − y |3

)T (
k(y)× j(x)

)
dµP(y), ∀x ∈ S .

For every θ ∈W 2,∞(R3,R3) one has

〈dC (S), θ〉 =

ˆ
S
θ · (X1 − divS(X2)i :) dµS (7)

where

X1 = −2ẐP(BSS jS − BT , jS) (8)

X2 = −2ZP(BSS jS − BT )jTS + 2λjS j
T
S − λ|jS |2(I3 − ννT ), (9)

where for i ∈ {1, 2, 3}, (X2)i : denotes the i-th line of X2 seen as a column
vector, and ν denotes the outward normal vector on S = ∂V .

R. Robin (LJLL, Sorbonne Université) Optimal Shape of Stellarators for Magnetic Confinement Fusion.December 1st, 2021 19 / 26



Numerical results for λ = 2.5e−16

Costs

Name χ2
B |Berr |∞ χ2

j |j |∞ EMcost

ref 4.80 · 10−3 5.15 · 10−2 1.43 · 1014 7.42 · 106 4.06 · 10−2

DPC 1.23 · 10−3 3.20 · 10−2 9.48 · 1013 5.99 · 106 2.49 · 10−2

Geometry

Name Distance (m) Perimeter (m2) Maximal curvature (m−1)

Ref 1.92 · 10−1 5.57 · 101 1.19 · 101

DPC 1.99 · 10−1 5.60 · 101 1.30 · 101
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After optimization
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Prospects

Collaboration with Renaissance fusion for industrial applications,

Use more complex costs in the shape optimisation.

Thank you for your attention !
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Cohomology and divergence free vector fields on the torus

Hodge decomposition

On a closed Riemannian manifold M

L2
p(M) = Bp ⊕ B∗p ⊕Hp,

where

Bp is the L2-closure of {dα | α ∈ Ωp−1(M)},
B∗p is the L2-closure of {d∗β | β ∈ Ωp+1(M)} (d∗ is the coderivative),

Hp is the set {ω ∈ Ωp(M) | ∆Hω = 0} of harmonic p-forms with ∆H

the Hodge Laplacian.

Thus for a flat Torus T , we only need to characterizes B∗1 (T ) and H1(T ).

B∗1 (T ) is the L2-closure of the 1-forms ∂Φ
∂u dv −

∂Φ
∂v du for Φ ∈ C∞(T ).

H1(T ) is a two-dimensional vector space as b1 = 2.
H1(T ) = {λ1du + λ2dv | (λ1, λ2) ∈ R2}.
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In vacuo Maxwell equations on a toroidal 3D domain

Let P a be toroidal domain. Let Γ be a toroidal loop inside P and denote
by Ip the electric current-flux across any surface enclosed by Γ (also equal
to the circulation of B along Γ).

Lemma

Let B ∈ C∞(P,R3) such that divB = 0 and curlB = 0 in P.
Let g be the normal magnetic field on ∂P. Then g and Ip determine
completely the magnetic field B in P. Besides, there exists a constant
C > 0 such that for every other magnetic field B̃ with the same total
poloidal currents, |B − B̃|L2(P,R3) ≤ C |g − g̃ |L2(∂P) where g̃ is the normal

component of B̃|∂P .

Idea: consider the cochain complex

C∞(P)
grad // C∞(P,R3)

curl // C∞(P,R3)
div // C∞(P).
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