Optimal Shape of Stellarators for Magnetic Confinement Fusion. In collaboration with Yannick Privat¹ and Mario Sigalotti²

Rémi Robin,

Laboratoire Jacques-Louis Lions, Sorbonne Université, Paris, France

December 1st, 2021

¹Université de Strasbourg ²Inria Paris

R. Robin (LJLL, Sorbonne Université) Optimal Shape of Stellarators for Magnetic C

December 1st, 2021 1 / 26

Introduction

- Stellarators
- Inverse problem

2 Shape optimization

- Introduction
- Admissible shapes
- Reach condition
- Numerical results

Nuclear fusion confinement

- Goal : Confine a plasma of approx. 150 millions K for as long as possible with a density as high as possible in order to achieve fusion ignition.
- Solution : A plasma is made of ionized particules, thus interacts with a magnetic field.

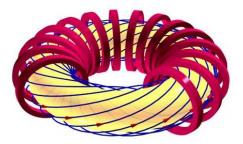


Figure: magnetic field lines inside a Tokamac, Inria team TONUS

Stellarators

Stellarator approach : The magnetic confinement relies mainly on external coils.

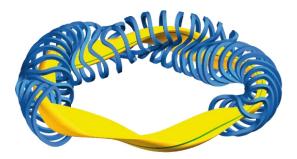


Figure: Wendelstein 7-X, Max-Planck Institut für Plasmaphysik

The plasma shape and the coils are obtained by several optimizations.

Typical approach

• Find a good magnetic field to ensure the plasma confinement.

5/26

Typical approach

- Find a good magnetic field to ensure the plasma confinement.
- We use a 'Coil winding surface' and find a current-sheet to generate the given B_{target} [4].

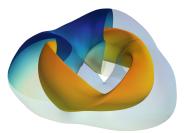


Figure: Coil winding surface and plasma surface of the NCSX Stellarator.

Typical approach

- Find a good magnetic field to ensure the plasma confinement.
- We use a 'Coil winding surface' and find a current-sheet to generate the given B_{target} [4].
- (Approximate the current-sheet by several coils)

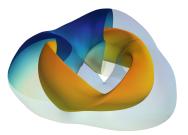


Figure: Coil winding surface and plasma surface of the NCSX Stellarator.

The magnetic field generated by the electric currents on the CWS (denoted S).

Biot-Savart law in vacuo

$$\forall y \notin S, B(y) = \mathsf{BS}(j)(y) = \int_{S} j(x) \times \frac{y - x}{|y - x|^3} dS(x), \tag{1}$$

The figure of merit we use to ensure $B \approx B_{target}$ is

plasma-shape objective

$$\chi_B^2(j) = \int_P |\mathsf{BS}(j)(y) - B_{target}(y)|^2 dy \tag{2}$$

The goal

$$\inf_{\substack{j \in L^2(\mathfrak{X}(S))\\ \text{div } i=0}} \chi_B^2(j)$$

R. Robin (LJLL, Sorbonne Université) Optimal Shape of Stellarators for Magnetic C

(3)

An inverse problem

- $BS(\cdot) \text{ is continuous from } L^2(\mathfrak{X}(S)) \to C^k(\partial P, \mathbb{R}^3)$ $\implies j \mapsto BS(j) \text{ is compact (from } L^2(\mathfrak{X}(S)) \to L^2(P, \mathbb{R}^3)).$
 - Use a finite dimensional subspace [4].
 - Use a Tychonoff regularization [3].

$$\chi_j^2 = \int_{\mathcal{S}} |j|^2 dS. \tag{4}$$

Lemma

For any $\lambda > 0$, the problem

$$\inf_{\substack{\in L^2(\mathfrak{X}(S))\\ \text{div}\, j=0}} \chi_B^2 + \lambda \chi_j^2$$

admits a unique minimizer

$$j_{S} = (\lambda \operatorname{Id} + \operatorname{BS}_{S}^{\dagger} \operatorname{BS}_{S})^{-1} \operatorname{BS}_{S}^{\dagger} B_{T}.$$
(5)

(P)

Introduction

- Stellarators
- Inverse problem

2 Shape optimization

- Introduction
- Admissible shapes
- Reach condition
- Numerical results

We want to optimize on both the current sheet and the Coil Winding Surface.

Admissible shapes

- Topology of a torus
- Regular enough
- Far enough to the plasma

Shape optimization problem

$$\inf_{\substack{S \text{ admissible} \\ \text{div} \, j = 0}} \left(\inf_{\substack{j \in L^2(\mathfrak{X}(S)) \\ \text{div} \, j = 0}} \chi_B^2 + \lambda \chi_j^2 \right)$$
(SOP)

First approach by Paul, Abel, Landreman, Dorland [2019] [5]

• Finite dimensional approach (discretize then optimize)

First approach by Paul, Abel, Landreman, Dorland [2019] [5]

- Finite dimensional approach (discretize then optimize)
- Regularity of the surface is ensured by non intrinsic cost (Fourier compression).

First approach by Paul, Abel, Landreman, Dorland [2019] [5]

- Finite dimensional approach (discretize then optimize)
- Regularity of the surface is ensured by non intrinsic cost (Fourier compression).

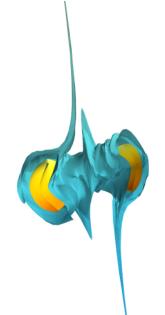
Our contribution

- Existence of a minimizer of the shape optimisation problem,
- Computation of the shape gradient in the set of admissible shapes,
- Numerics based on our approach.

11 / 26

Constraints on the set of admissible shapes $S \in \mathcal{O}_{\mathsf{adm}}$:

- S is a orientable surface homotopic to the usual torus.
- (2) $dist(S, P) \geq \delta$
- \bigcirc S is in included in a compact set
- $\mathcal{H}^2(S) \leq A_M$



イロト イヨト イヨト イヨト

3

Constraints on the set of admissible shapes $S \in \mathcal{O}_{\mathsf{adm}}$:

- **I** S is a orientable surface homotopic to the usual torus.
- (a) $dist(S, P) \geq \delta$
- \bigcirc S is in included in a compact set
- Lower bound on the reach of S

Reach

[1][Delfour-Zolesio] and [2][1969 Federer]

 $V \subset \mathbb{R}^n$, Sk(V) is the set of all points in \mathbb{R}^n whose projection onto V is not unique.

$$U_h(V) = \{x \mid d(x, V) < h\}$$

Reach(V) = sup{h | U_h(V) \cap Sk(V) = \emptyset}

Theorem[2021, Privat, R., Sigalotti]

The shape optimisation problem

$$\inf_{\substack{S \in \mathcal{O}_{\text{adm}} j \in L^2(\mathfrak{X}(S)) \\ \text{div} j = 0}} \chi_B^2 + \lambda \chi_j^2$$

(6)

admits a minimizer.

Key ingredients of the proof :

- Compactness of \mathcal{O}_{adm} ,
- Lower semicontinuity of the cost.
 - Transport *j* while preserving tangent and divergence free,
 - Use a volumic approximation.

$$d_V(x) = \inf_{y \in V} |x - y|, \qquad b_V(x) = d_V(x) - d_{\mathbb{R}^3 \setminus V}(x);$$

Let r be in $(0, r_{\min})$ and denote by $(S_n)_{n \in \mathbb{N}} = (\partial V_n)_{n \in \mathbb{N}}$ a sequence in \mathcal{O}_{adm} . Then, there exists $S_{\infty} = \partial V_{\infty} \in \mathcal{O}_{adm}$ such that, up to a subsequence,

- $b_{V_{\infty}}$ is in $\mathscr{C}^{1,1}(\overline{U_r(S_{\infty})})$ and $(b_{V_n})_{n\in\mathbb{N}}$ converges to $b_{V_{\infty}}$ in $\mathscr{C}^1(\overline{U_r(S_{\infty})})$;
- $(b_{V_n})_{n\in\mathbb{N}}$ converges to $b_{V_{\infty}}$ in $\mathscr{C}(\overline{D})$;
- $(d_{S_n})_{n\in\mathbb{N}}$ converges to $d_{S_{\infty}}$ in $\mathscr{C}(\overline{D})$;
- $(\mathscr{H}^2(S_n))_{n\in\mathbb{N}}$ converges to $\mathscr{H}^2(S_\infty)$.

17 / 26

• Let $heta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.

э

- Let $\theta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.
- $\varphi^{\varepsilon} = \operatorname{Id} + \varepsilon \theta$ induces a diffeomorphism from S to S^{ε}

- Let $heta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.
- $\varphi^{\varepsilon} = \operatorname{Id} + \varepsilon \theta$ induces a diffeomorphism from S to S^{ε}
- We want to study $\lim_{\epsilon \to 0} \frac{C(S^{\varepsilon}) C(S)}{\varepsilon}$

٥

- Let $heta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.
- $\varphi^{\varepsilon} = \operatorname{Id} + \varepsilon \theta$ induces a diffeomorphism from S to S^{ε}
- We want to study $\lim_{\epsilon \to 0} \frac{C(S^{\varepsilon}) C(S)}{\varepsilon}$

$$\frac{\partial \tilde{C}(S, j_S)}{\partial S} = \frac{\partial \tilde{C}}{\partial S}(S, j_S) + \frac{\partial \tilde{C}}{\partial j} \frac{\partial j_S}{\partial S}(S, j_S).$$

٥

- Let $heta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.
- $\varphi^{\varepsilon} = \mathsf{Id} + \varepsilon \theta$ induces a diffeomorphism from S to S^{ε}
- We want to study $\lim_{\epsilon \to 0} \frac{C(S^{\varepsilon}) C(S)}{\varepsilon}$

$$\frac{\partial \tilde{C}(S, j_S)}{\partial S} = \frac{\partial \tilde{C}}{\partial S}(S, j_S) + \frac{\partial \tilde{C}}{\partial j} \frac{\partial j_S}{\partial S}(S, j_S).$$

The differential of φ^ε = Id +εθ provides a diffeomorphism from 𝔅(S) to 𝔅(S^ε).

٥

- Let $heta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.
- $\varphi^{\varepsilon} = \mathsf{Id} + \varepsilon \theta$ induces a diffeomorphism from S to S^{ε}
- We want to study $\lim_{\epsilon \to 0} \frac{C(S^{\varepsilon}) C(S)}{\varepsilon}$

$$\frac{\partial \tilde{C}(S, j_S)}{\partial S} = \frac{\partial \tilde{C}}{\partial S}(S, j_S) + \frac{\partial \tilde{C}}{\partial j} \frac{\partial j_S}{\partial S}(S, j_S).$$

- The differential of φ^ε = Id +εθ provides a diffeomorphism from 𝔅(S) to 𝔅(S^ε).
- Nevertheless the range of \mathscr{F}^0_S by φ^ε does not coincide with $\mathscr{F}^0_{S^\varepsilon}.$

٥

- Let $heta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.
- $\varphi^{\varepsilon} = \operatorname{Id} + \varepsilon \theta$ induces a diffeomorphism from S to S^{ε}
- We want to study $\lim_{\epsilon \to 0} \frac{C(S^{\varepsilon}) C(S)}{\varepsilon}$

$$\frac{\partial \tilde{C}(S, j_S)}{\partial S} = \frac{\partial \tilde{C}}{\partial S}(S, j_S) + \frac{\partial \tilde{C}}{\partial j} \frac{\partial j_S}{\partial S}(S, j_S).$$

- The differential of φ^ε = Id +εθ provides a diffeomorphism from 𝔅(S) to 𝔅(S^ε).
- Nevertheless the range of \mathscr{F}_{S}^{0} by φ^{ε} does not coincide with $\mathscr{F}_{S^{\varepsilon}}^{0}$.

$$\begin{split} \Phi^{\varepsilon} : \mathscr{F}_{\mathcal{S}} &\longrightarrow \mathscr{F}_{\mathcal{S}^{\varepsilon}} \\ X &\longmapsto \frac{1}{[J(\mu_{\mathcal{S}}, \mu^{\varepsilon}_{\mathcal{S}})\varphi^{\varepsilon}] \circ \varphi^{-\varepsilon}} (\mathsf{Id} + \varepsilon D\theta) X \circ \varphi^{-\varepsilon} \end{split}$$

Shape gradient

$$Z_P(k) = \int_P K(\cdot, y) \times k(y) d\mu_P(y)$$
$$\widehat{Z}_P(k, j)(x) = \int_P D_x \left(\frac{x - y}{|x - y|^3}\right)^T (k(y) \times j(x)) d\mu_P(y), \quad \forall x \in S.$$

For every $heta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ one has

•

$$\langle dC(S), \theta \rangle = \int_{S} \theta \cdot (X_1 - \operatorname{div}_S(X_2)_{i:}) d\mu_S$$
 (7)

where

$$X_1 = -2\widehat{Z}_P(\mathsf{BS}_S j_S - B_T, j_S) \tag{8}$$

$$X_{2} = -2Z_{P}(\mathsf{BS}_{S}j_{S} - B_{T})j_{S}^{T} + 2\lambda j_{S}j_{S}^{T} - \lambda |j_{S}|^{2}(I_{3} - \nu \nu^{T}), \qquad (9)$$

where for $i \in \{1, 2, 3\}$, $(X_2)_i$ denotes the *i*-th line of X_2 seen as a column vector, and ν denotes the outward normal vector on $S = \partial V$.

Numerical results for $\lambda = 2.5e^{-16}$

Costs

Name	χ^2_B	$ B_{err} _{\infty}$	χ_j^2	$ j _{\infty}$	EMcost
ref	$4.80 \cdot 10^{-3}$	$5.15 \cdot 10^{-2}$	$1.43 \cdot 10^{14}$	$7.42 \cdot 10^{6}$	$4.06 \cdot 10^{-2}$
DPC	$1.23 \cdot 10^{-3}$	$3.20 \cdot 10^{-2}$	$9.48 \cdot 10^{13}$	$5.99 \cdot 10^{6}$	$2.49 \cdot 10^{-2}$

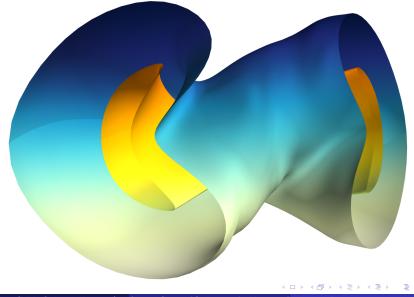
Geometry

Name	Distance (m)	Perimeter (m^2)	Maximal curvature (m^{-1})
Ref	$1.92\cdot10^{-1}$	$5.57 \cdot 10^1$	$1.19\cdot 10^1$
DPC	$1.99\cdot 10^{-1}$	$5.60 \cdot 10^1$	$1.30\cdot 10^1$

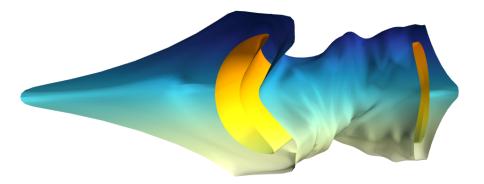
æ

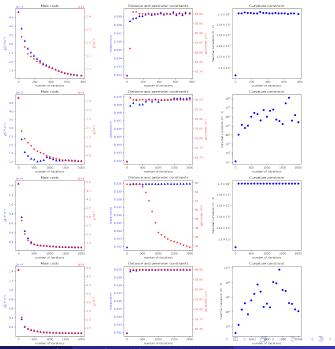
< □ > < □ > < □ > < □ > < □ > < □ >

Reference



After optimization





R. Robin (LJLL, Sorbonne Université)

Optimal Shape of Stellarators for Magnetic C

December 1st, 2021 2

23 / 26

- Collaboration with Renaissance fusion for industrial applications,
- Use more complex costs in the shape optimisation.

Thank you for your attention !

M. C. Delfour and J.-P. Zolésio.

Shapes and geometries, volume 22 of Advances in Design and Control.

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2011. Metrics, analysis, differential calculus, and optimization.

H. Federer.

Geometric measure theory.

Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.

M. Landreman.

An improved current potential method for fast computation of stellarator coil shapes.

Nuclear Fusion, 57(4):046003, Apr. 2017.

P. Merkel.

Solution of stellarator boundary value problems with external currents. *Nuclear Fusion*, 27(5):867–871, May 1987.

December 1st, 2021

24 / 26

E. J. Paul, I. G. Abel, M. Landreman, and W. Dorland.
 An adjoint method for neoclassical stellarator optimization.
 Journal of Plasma Physics, 85(5):795850501, 2019.

Cohomology and divergence free vector fields on the torus

Hodge decomposition

On a closed Riemannian manifold M

$$L^2_p(M) = B_p \oplus B_p^* \oplus \mathscr{H}_p,$$

where

- B_p is the L^2 -closure of $\{d\alpha \mid \alpha \in \Omega^{p-1}(M)\}$,
- B_p^* is the L^2 -closure of $\{d^*\beta \mid \beta \in \Omega^{p+1}(M)\}$ $(d^*$ is the coderivative),
- ℋ_p is the set {ω ∈ Ω^p(M) | Δ_Hω = 0} of harmonic *p*-forms with Δ_H the Hodge Laplacian.

Thus for a flat Torus T, we only need to characterizes $B_1^*(T)$ and $\mathcal{H}_1(T)$.

- $B_1^*(T)$ is the L^2 -closure of the 1-forms $\frac{\partial \Phi}{\partial u} dv \frac{\partial \Phi}{\partial v} du$ for $\Phi \in \mathscr{C}^{\infty}(T)$.
- $\mathscr{H}_1(T)$ is a two-dimensional vector space as $b_1 = 2$. $\mathscr{H}_1(T) = \{\lambda_1 du + \lambda_2 dv \mid (\lambda_1, \lambda_2) \in \mathbb{R}^2\}.$

In vacuo Maxwell equations on a toroidal 3D domain

Let *P* a be toroidal domain. Let Γ be a toroidal loop inside *P* and denote by I_p the electric current-flux across any surface enclosed by Γ (also equal to the circulation of *B* along Γ).

Lemma

Let $B \in C^{\infty}(P, \mathbb{R}^3)$ such that div B = 0 and curl B = 0 in P. Let g be the normal magnetic field on ∂P . Then g and I_p determine completely the magnetic field B in P. Besides, there exists a constant C > 0 such that for every other magnetic field \tilde{B} with the same total poloidal currents, $|B - \tilde{B}|_{L^2(P,\mathbb{R}^3)} \leq C|g - \tilde{g}|_{L^2(\partial P)}$ where \tilde{g} is the normal component of $\tilde{B}|_{\partial P}$.

Idea: consider the cochain complex

$$\mathscr{C}^{\infty}(P) \xrightarrow{\operatorname{grad}} \mathscr{C}^{\infty}(P, \mathbb{R}^3) \xrightarrow{\operatorname{curl}} \mathscr{C}^{\infty}(P, \mathbb{R}^3) \xrightarrow{\operatorname{div}} \mathscr{C}^{\infty}(P).$$