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Spin dynamics

2-level system (Qubit)
Cauchy problem associated with Schroedinger equation :

i∂tψ(t) = H(t)ψ(t), ψ(0) = ψ0

where ψ0 ∈ C2, |ψ0| = 1, H(t) is self-adjoint.

H(t) =
( a b + ic

b − ic −a
)

= aσz + bσx + cσy .

exemple of physical interpretation
In NMR, a, b, c are respectively the strength of the magnetic field along
z , x , y .
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Population transfer

Statement of the problem
Let E > 0 (strength of the z magnetic field),−E < α0 ≤ 0 ≤ α1 the
dispersion parameters. For all α ∈ [α0, α1], let

Hα(v) =
( E + α v

v∗ −E − α
)
.

For any ε > 0, can we find T > 0 and w ∈ C2([0,T ],K) such that the
solutions of

i∂tψ
α
w = Hα(w(t))ψαw ψαw (0) = e2

satisfies ∀α ∈ [α0, α1], ∃θ, |ψαw (T )− eiθe1| ≤ ε?

Remarks
This is an ensemble control problem.
For K = C we can use standard adiabatic theory.
For K = R, physicists use the Rotating Wave Approximation (RWA)
to ’duplicate’ a real control into complex one.
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Adiabatic Approximation

Interaction frame
Let us choose the pulse w in the form

w(t) = u(t)e−i(2Et+∆(t)),

where, u(·) and ∆(·) are two real-valued smooth functions. Applying the
change of variables

ψ(t) =
( e−i(Et+∆(t)/2) 0

0 ei(Et+∆(t)/2)

)
Ψ(t),

we obtain
i dΨ

dt =
( α− v(t) u(t)

u(t) −α + v(t)
)

Ψ.

where v(t) := ∆′(t)/2.
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Adiabatic Approximation

Adiabatic Approximation
Let Hα(u, v) = (α− v)σz + uσx . The eigenvalues of Hα(u, v) are
±
√

(α− v)2 + u2.

Initial and finite time Hamiltonian

Hα(0, v0) =
( α− v0 0

0 −α + v0

)

Hα(0, v1) =
( α− v1 0

0 −α + v1

)
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Adiabatic Approximation

Adiabatic control
Let v0, v1 ∈ R be such that v0 < α0 and α1 < v1 and consider a smooth
path t 7→ (u(t), v(t)) lying in the half-plane u > 0 except for the initial
and final points, where u = 0.

Theorem
There exists C > 0 such that, for every α ∈ [α0, α1] and every ε > 0, the
solution ψαε of

i dΨ
dt =

( α− vε(t) uε(t)
uε(t) −α + vε(t)

)
Ψ, ψαε (0) = e2

with uε(t) = u(εt) and vε(t) = v(εt) satisfies |Ψ(T/ε)− (eiθ, 0)| ≤ Cε
for some θ.
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Rotating Wave Approximation

Motivation
Consider the controls

wε(t) = 2εu(εt) cos(2Et + ∆(εt)),
wR
ε (t) = εu(εt)e−i(2Et+∆(εt)).

In the case where α = 0, the evolution associated with the real control in
the interaction frame is

i dψ̂wε
dt =ε

[( −∆′(εt)/2 u(εt)
u(εt) ∆′(εt)/2

)
+

( 0 ei(4Et+2∆(εt))u(εt)
e−i(4Et+2∆(εt))u(εt) 0

)]
ψ̂wε .
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wε
dt =ε

( −∆′(εt)/2 u(εt)
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)
ψ̂R
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Rotating Wave Approximation

Theorem
Let α = 0, ψwε and ψR

wε the evolution of some ψ0 with the control wε and
wR
ε . Then there exist C > 0 such that

∀t ∈ [0,T/ε], |ψwε(t)− ψwR
ε

(t)| < Cε.
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Comparison of the two approximations

RWA
The control

wε(t) = 2εu(εt) cos(2Et + ∆(εt)),
wR
ε (t) = εu(εt)e−i(2Et+∆(εt)).

give the same dynamics to an order ε in a Time T/ε. Higher order
averaging (add a correction on the Hamiltonian) allow the same order of
approximation on T/εk .

AA
the control

wε(t) = uε(t)e−i(2Et+∆(εt)/ε),

ensure a population transfer for all α up to an order in ε in time T/ε.
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First idea
Take u small and use

wε(t) = uε(t)2 cos(2Et + ∆(εt)/ε) to simulate uε(t)e−i(2Et+∆(εt)/ε).

Pb: simulations seem to show that it does not work in general.

Comparison of the real-valued and
complex-valued chirp scheme of the
first point with E = 0.75, α = 0.25,
ε1 = 1, v0 = −0.5, v1 = 0.5.
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The dilemma

RWA
You need small control and not too long final time.

AA
The smaller the control, the longer time you need.
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Compatibility

The control

wε1,ε2(t) = 2ε1u(ε1ε2t) cos
(
2Et + ∆(ε1ε2t)

ε1ε2

)

Theorem
Assume that v0 < 0 < v1 are such that 3(E + v0) ≥ E + v1. Choose T and
u,∆ : [0,T ]→ R smooth enough (e.g., u ∈ C2 and ∆ ∈ C3) such that

1 (u(0),∆′(0)) = (0, 2v0) and (u(T ),∆′(T )) = (0, 2v1);
2 ∀s ∈ (0,T ), u(s) > 0 and ∆′′(s) ≥ 0.

Denote by ψαε1,ε2 the solution with initial condition ψαε1,ε2(0) = (0, 1) and
external field wε1,ε2 . Then, for every N0 ∈ N, for every compact interval
I ⊆ (v0, v1), there exist CN0 > 0 and δ > 0 such that for every α ∈ I and
every (ε1, ε2) ∈ (0, δ)2, there exists θ such that
|ψαε1,ε2(1/ε1ε2)− (eiθ, 0)| < CN0 max(ε2/ε1, ε

N0−1
1 /ε2).
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Some notations

Some notations

E1(t) = 2αt − ∆(ε1ε2t)
ε1ε2

, f1(t) = d
dt E1(t),

E2(t) = 4Et + 2αt + ∆(ε1ε2t)
ε1ε2

, f2(t) = d
dt E2(t),

A(E ) =
( 0 eiE

e−iE 0
)
, B(E ) =

( 0 −ieiE

ie−iE 0
)
.

In terms of these new notations, we can rewrite the Hamiltonian in the
interaction frame :

HI(t) = ε1u(ε1ε2t)A(E1(t)) + ε1u(ε1ε2t)A(E2(t)), t ∈ [0, 1
ε1ε2

].
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A technical lemma
Let α ∈ (v0, v1) and assume that E + α > 0 and 4E − 3∆′(s) > 2α for
every s ∈ [0, 1]. Then, for every N0 ∈ N there exists a Hamiltonian HRWA
of the form

HRWA(t) = ε1h1(ε1ε2t)A(E1(t)) + ε2
1h2(ε1ε2t)B(E1(t)) + ε2

1h3(ε1ε2t)σz ,

with h1, h2, h3 polynomials in (ε1, ε2) with coefficients in C∞([0, 1],R),
such that the solution ψRWA of the Cauchy problem

i d
dtψRWA = HRWAψRWA, ψRWA(0) = ψI(0),

satisfies |ψRWA( 1
ε1ε2

)− ψI( 1
ε1ε2

)| = O(ε2
1ε2 + εN0−1

1 /ε2). More precisely,
there exist hj,p,q ∈ C∞([0, 1],R), for j = 1, 2, 3, p = 0, . . . ,N0, and
q = 0, 1, such that

1 h1 = u +
∑N0

p=1
∑1

q=0 ε
p
1ε

q
2h1,p,q with h1,p,0(0) = h1,p,0(1) = 0,

2 h2 =
∑N0

p=0
∑1

q=0 ε
p
1ε

q
2h2,p,q with h2,p,0(0) = h2,p,0(1) = 0,

3 h3 =
∑N0

p=0
∑1

q=0 ε
p
1ε

q
2h3,p,q with h3,p,0(0) = h3,p,0(1) = 0.
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The toward the AA part

Lemma
There exists δ > 0 such that ψRWA satisfies
|ψRWA( 1

ε1ε2
)− (eiθ, 0)| ≤ Mε2/ε1 for some θ ∈ R.

A new change of variable: ψslow(t) = U(t)ψRWA(t) with

U(t) =

ei(αt−∆(ε1ε2t)
2ε1ε2

) 0

0 e−i(αt−∆(ε1ε2t)
2ε1ε2

)

 .
The new Hamiltonian depends only on s = ε1ε2t.

Hslow(s) = ε1h1(s)σx + ε2
1h2(s)σy +

(
α− ∆′(s)

2 + ε2
1h3(s)

)
σz .

H̃slow = ε1uσx + (α−∆′/2)σz
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some other technical estimates

Let Pε1,ε2 be the spectral projector on the negative eigenvalue of Hslow.
Then :

1 |Pε1,ε2(0)− Pe1 | = O(ε2
1ε2) and |Pε1,ε2(1)− Pe2 | = O(ε2

1ε2), where
Pei is the orthogonal projector on Cei ;

2
∫ 1

0 |(
d
ds Pε1,ε2)(s)|2ds = O(1/ε1);

3
∫ 1

0 |(
d2

ds2 Pε1,ε2)(s)|ds = O(1/ε1);
4
∫ 1

0 |
1

ωε1,ε2 (s)2
d
ds Pε1,ε2(s)|| d

ds Hslow(s)|ds = O(1/ε2
1).
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AA

∣∣ψRWA
( 1
ε1ε2

)
− (eiθ, 0)

∣∣ ≤ ε1ε2

[ | d
ds Pε1,ε2(1)|
ωε1,ε2(1) +

| d
ds Pε1,ε2(0)|
ωε1,ε2(0)

+
∫ 1

0

(2| d
ds Pε1,ε2(s)|2

ωε1,ε2(s) +
| d2

ds2 Pε1,ε2(s)|
ωε1,ε2(s) +

| d
ds Pε1,ε2(s)|| d

ds Hslow(s)|
2ωε1,ε2(s)2

)
ds
]
,
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Summary of the proof

Summary of the proof
Thanks to the assumption 3(E + v0) ≥ E + v1, it is possible to define
a N0th averaging approximation thanks to an algorithm.
The complicated Hamiltonian dynamics we obtain stays close to the
one of the first order RWA Hamiltonian.
Convergence of the population transfer for the first order RWA
hamiltonian dynamics is ensure when ε2 � ε1.
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ε1 = 0.5 and ε2 = 0.1. In thick line are the trajectories corresponding to
the equivalent 1st order RWA system.
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ε1ε2 = 0.05, α = 0. In thick line are the trajectories corresponding to the
equivalent 1st order RWA system and in dotted line the theoretical AA
trajectories.
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Log of the distance from ψ0
ε1,ε2(1/ε1ε2) to the orbit of (1, 0).
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Li-Khaneja

Let D = [Em,EM ]× [δm, δM ] be the compact set of the dispersion
parameters and endow F := C0(D, SU2) with the usual distance
dF (f , g) := maxd∈D ‖f (d)− g(d)‖.

[Li–Khaneja, 2009]
For any control bound K > 0, any target distribution MF ∈ F , and any
ε > 0, there exist some T > 0 and controls u, v ∈ L∞([0,T ], [−K ,K ])
such that the solution of the equation

i d
dt M(E , δ, t) = (Eσz + δu(t)σx + δv(t)σy )M(E , δ, t),

M(E , δ, 0) = I2, ∀(E , δ) ∈ D

satisfies dF (M(·, ·,T ),MF (·, ·)) < ε.
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Generalisation of Li-Khaneja

Theorem
Suppose 3Em > EM , let D = [Em,EM ]× [δm, δM ] ⊂ R∗+ × R∗+.
Fix ε > 0, MF ∈ F and K > 0. Then there exist T > 0 and
u ∈ L∞([0,T ], [−K ,K ]) such that the solution of the ensemble control
problem

d
dt M(E , δ, t) = (Eσz + δu(t)σx )M(E , δ, t), (1)

M(E , δ, 0) = I2,∀(E , δ) ∈ D (2)

satisfies ||M(·, ·,T )−MF (·, ·)||F < ε.
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Main idea

Corollary of AA+RWA part
Suppose that 3Em > EM . Then, for any K > 0 and any ε > 0, there exist
T > 0 and a control u ∈ L∞([0,T ], [−K ,K ]) such that the solution of
Equation (1) satisfies
max(E ,δ)∈Dminθ∈[0,2π] ‖M(E , δ,T )(0, 1)T − (eiθ, 0)T‖ < ε.
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Reachable propagators
Let R = {M(·, ·,T ) | T > 0, M is a solution of (1) for some u ∈
L∞([0,T ], [−K ,K ])}

For all t in R, (E , δ) 7→ e−itEσz is in R̄,
Let u ∈ R. Then (E , δ) 7→ euδiσx is in R̄.

A Lie Algebra (of infinite dimension)
Let

g = {X ∈ C0(D, su2) | ∀t ∈ R, etX ∈ R̄}.

, Then g is stable under brackets and addition.
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for any n,m ∈ N, and any sequence (bk,l )k,l

m∑
k=0

n∑
l=0

bk,lδ
2k+2E 2l+1iσx ∈ g,

m∑
k=0

n∑
l=0

ck,lδ
2k+1E 2l+1iσy ∈ g,

m∑
k=0

n∑
l=0

dk,lδ
2k+1E 2l+2iσz ∈ g.

=⇒ (Stone-Weierstrass) : for any continuous functions f (d)σ∗ ∈ g.
=⇒ (connectedness of F) : R̄ = F

R. Robin (LJLL) Ensemble qubit controllability with a single control via adiabatic and rotating wave approximations.September 13, 2021 28 / 29



Conclusion

A few open questions
Under the assumption 3Em > EM can we prove convergence for a
fixed ε1?
What happen in higher dimension? In infinite dimension? We expect
the method to work but with conditions depending of N0.
Can we extend the controllability result without the assumption
3Em > EM?
Is there a more efficient way to prove the ensemble controllability
(e.g. smaller controllability time).

Thank you for your attention !
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