Ensemble qubit controllability with a single control via adiabatic and rotating wave approximations. In collaboration with Nicolas Augier, Ugo Boscain and Mario Sigalotti

Rémi Robin

September 13, 2021

R. Robin (LJLL)

Ensemble qubit controllability with a single co

September 13, 2021 1 / 29

1 Introduction : RWA and AA

- 2 Compatibility of the two approximations
- 3 The ensemble control problem

2-level system (Qubit)

Cauchy problem associated with Schroedinger equation :

$$i\partial_t\psi(t)=H(t)\psi(t),\quad\psi(0)=\psi_0$$

where $\psi_0 \in \mathbb{C}^2$, $|\psi_0| = 1$, H(t) is self-adjoint.

$$H(t) = \begin{pmatrix} a & b + ic \\ b - ic & -a \end{pmatrix} = a\sigma_z + b\sigma_x + c\sigma_y.$$

exemple of physical interpretation

In NMR, a, b, c are respectively the strength of the magnetic field along z, x, y.

A (1) > A (2) > A

Population transfer

Statement of the problem

Let E > 0 (strength of the z magnetic field), $-E < \alpha_0 \le 0 \le \alpha_1$ the dispersion parameters. For all $\alpha \in [\alpha_0, \alpha_1]$, let

$$H^{\alpha}(\mathbf{v}) = \begin{pmatrix} E + \alpha & \mathbf{v} \\ \mathbf{v}^* & -E - \alpha \end{pmatrix}.$$

For any $\epsilon > 0$, can we find T > 0 and $w \in C^2([0, T], \mathbb{K})$ such that the solutions of

$$i\partial_t \psi^{lpha}_w = H^{lpha}(w(t))\psi^{lpha}_w \quad \psi^{lpha}_w(0) = e_2$$

satisfies $\forall \alpha \in [\alpha_0, \alpha_1], \exists \theta, |\psi_w^{\alpha}(T) - e^{i\theta}e_1| \leq \epsilon$?

Population transfer

Statement of the problem

Let E > 0 (strength of the z magnetic field), $-E < \alpha_0 \le 0 \le \alpha_1$ the dispersion parameters. For all $\alpha \in [\alpha_0, \alpha_1]$, let

$$H^{\alpha}(\mathbf{v}) = \begin{pmatrix} E + \alpha & \mathbf{v} \\ \mathbf{v}^* & -E - \alpha \end{pmatrix}.$$

For any $\epsilon > 0$, can we find T > 0 and $w \in C^2([0, T], \mathbb{K})$ such that the solutions of

$$\partial_t \psi^{lpha}_w = H^{lpha}(w(t))\psi^{lpha}_w \quad \psi^{lpha}_w(0) = e_2$$

satisfies $\forall \alpha \in [\alpha_0, \alpha_1], \exists \theta, |\psi_w^{\alpha}(T) - e^{i\theta}e_1| \leq \epsilon$?

Remarks

- This is an ensemble control problem.
- For $\mathbb{K} = \mathbb{C}$ we can use standard adiabatic theory.
- For K = R, physicists use the Rotating Wave Approximation (RWA) to 'duplicate' a real control into complex one.

Interaction frame

Let us choose the pulse w in the form

$$w(t) = u(t)e^{-i(2Et+\Delta(t))},$$

where, $u(\cdot)$ and $\Delta(\cdot)$ are two real-valued smooth functions. Applying the change of variables

$$\psi(t) = \left(egin{array}{cc} e^{-i(Et+\Delta(t)/2)} & 0 \ 0 & e^{i(Et+\Delta(t)/2)} \end{array}
ight) \Psi(t)$$

we obtain

$$i\frac{d\Psi}{dt} = \begin{pmatrix} \alpha - v(t) & u(t) \\ u(t) & -\alpha + v(t) \end{pmatrix} \Psi.$$

where $v(t) := \Delta'(t)/2$.

э

A I > A I > A

Adiabatic Approximation

Adiabatic Approximation

Let
$$H_{\alpha}(u, v) = (\alpha - v)\sigma_z + u\sigma_x$$
. The eigenvalues of $H_{\alpha}(u, v)$ are $\pm \sqrt{(\alpha - v)^2 + u^2}$.

Adiabatic control

Let $v_0, v_1 \in \mathbb{R}$ be such that $v_0 < \alpha_0$ and $\alpha_1 < v_1$ and consider a smooth path $t \mapsto (u(t), v(t))$ lying in the half-plane u > 0 except for the initial and final points, where u = 0.

Theorem

There exists C > 0 such that, for every $\alpha \in [\alpha_0, \alpha_1]$ and every $\varepsilon > 0$, the solution $\psi_{\varepsilon}^{\alpha}$ of

$$irac{d\Psi}{dt} = \left(egin{array}{cc} lpha - m{v}_arepsilon(t) & u_arepsilon(t) \ u_arepsilon(t) & -lpha + m{v}_arepsilon(t) \end{array}
ight)\Psi, \quad \psi^lpha_arepsilon(0) = e_2$$

with $u_{\varepsilon}(t) = u(\varepsilon t)$ and $v_{\varepsilon}(t) = v(\varepsilon t)$ satisfies $|\Psi(T/\varepsilon) - (e^{i\theta}, 0)| \le C\varepsilon$ for some θ .

▲ @ ▶ ▲ ∃ ▶ ▲ ∃

Motivation

Consider the controls

$$\begin{split} w_{\varepsilon}(t) &= 2\varepsilon u(\varepsilon t) \cos(2Et + \Delta(\varepsilon t)), \\ w_{\varepsilon}^{\mathrm{R}}(t) &= \varepsilon u(\varepsilon t) e^{-i(2Et + \Delta(\varepsilon t))}. \end{split}$$

In the case where $\alpha=$ 0, the evolution associated with the real control in the interaction frame is

$$i\frac{d\hat{\psi}_{w_{\varepsilon}}}{dt} = \varepsilon \Big[\Big(\begin{array}{cc} -\Delta'(\varepsilon t)/2 & u(\varepsilon t) \\ u(\varepsilon t) & \Delta'(\varepsilon t)/2 \end{array} \Big) + \\ \Big(\begin{array}{cc} 0 & e^{i(4Et+2\Delta(\varepsilon t))}u(\varepsilon t) \\ e^{-i(4Et+2\Delta(\varepsilon t))}u(\varepsilon t) & 0 \end{array} \Big) \Big] \hat{\psi}_{w_{\varepsilon}}.$$

Motivation

Consider the controls

$$\begin{split} w_{\varepsilon}(t) &= 2\varepsilon u(\varepsilon t) \cos(2Et + \Delta(\varepsilon t)), \\ w_{\varepsilon}^{\mathrm{R}}(t) &= \varepsilon u(\varepsilon t) e^{-i(2Et + \Delta(\varepsilon t))}. \end{split}$$

In the case where $\alpha=$ 0, the evolution associated with the complex control in the interaction frame is

$$i\frac{d\hat{\psi}_{w_{\varepsilon}}^{\mathrm{R}}}{dt} = \varepsilon \begin{pmatrix} -\Delta'(\varepsilon t)/2 & u(\varepsilon t) \\ u(\varepsilon t) & \Delta'(\varepsilon t)/2 \end{pmatrix} \hat{\psi}_{w_{\varepsilon}}^{\mathrm{R}}.$$

Theorem

Let $\alpha = 0$, $\psi_{w_{\varepsilon}}$ and $\psi_{w_{\varepsilon}}^{R}$ the evolution of some ψ_{0} with the control w_{ε} and w_{ε}^{R} . Then there exist C > 0 such that

$$\forall t \in [0, T/\varepsilon], |\psi_{w_{\varepsilon}}(t) - \psi_{w_{\varepsilon}^{R}}(t)| < C\varepsilon.$$

RWA

The control

$$\begin{split} w_{\varepsilon}(t) &= 2\varepsilon u(\varepsilon t) \cos(2Et + \Delta(\varepsilon t)), \\ w_{\varepsilon}^{\mathrm{R}}(t) &= \varepsilon u(\varepsilon t) e^{-i(2Et + \Delta(\varepsilon t))}. \end{split}$$

give the same dynamics to an order ε in a Time T/ε . Higher order averaging (add a correction on the Hamiltonian) allow the same order of approximation on T/ε^k .

AA

the control

$$w_{\varepsilon}(t) = u_{\varepsilon}(t)e^{-i(2Et+\Delta(\varepsilon t)/\varepsilon)}$$

ensure a population transfer for all α up to an order in ε in time T/ε .

R. Robin (LJLL)

Ensemble qubit controllability with a single co

September 13, 2021 11 / 29

First idea

Take *u* small and use

 $w_{\varepsilon}(t) = u_{\varepsilon}(t)2\cos(2Et + \Delta(\varepsilon t)/\varepsilon)$ to simulate $u_{\varepsilon}(t)e^{-i(2Et + \Delta(\varepsilon t)/\varepsilon)}$.

Pb: simulations seem to show that it does not work in general.

Comparison of the real-valued and complex-valued chirp scheme of the first point with E = 0.75, $\alpha = 0.25$, $\varepsilon_1 = 1$, $v_0 = -0.5$, $v_1 = 0.5$.

RWA

You need small control and not too long final time.

AA

The smaller the control, the longer time you need.

13/29

Compatibility

The control

$$w_{\varepsilon_1,\varepsilon_2}(t) = 2\varepsilon_1 u(\varepsilon_1 \varepsilon_2 t) \cos\left(2Et + \frac{\Delta(\varepsilon_1 \varepsilon_2 t)}{\varepsilon_1 \varepsilon_2}\right)$$

Theorem

Assume that $v_0 < 0 < v_1$ are such that $3(E + v_0) \ge E + v_1$. Choose T and $u, \Delta : [0, T] \rightarrow \mathbb{R}$ smooth enough (e.g., $u \in C^2$ and $\Delta \in C^3$) such that

- $\ \, (u(0),\Delta'(0))=(0,2v_0) \ \, \text{and} \ \, (u(T),\Delta'(T))=(0,2v_1); \ \,$
- $\ \ 2 \ \ \forall s \in (0, T), u(s) > 0 \ \ \text{and} \ \ \Delta''(s) \geq 0.$

Denote by $\psi_{\varepsilon_1,\varepsilon_2}^{\alpha}$ the solution with initial condition $\psi_{\varepsilon_1,\varepsilon_2}^{\alpha}(0) = (0,1)$ and external field $w_{\varepsilon_1,\varepsilon_2}$. Then, for every $N_0 \in \mathbb{N}$, for every compact interval $I \subseteq (v_0, v_1)$, there exist $C_{N_0} > 0$ and $\delta > 0$ such that for every $\alpha \in I$ and every $(\varepsilon_1, \varepsilon_2) \in (0, \delta)^2$, there exists θ such that $|\psi_{\varepsilon_1,\varepsilon_2}^{\alpha}(1/\varepsilon_1\varepsilon_2) - (e^{i\theta}, 0)| < C_{N_0} \max(\varepsilon_2/\varepsilon_1, \varepsilon_1^{N_0-1}/\varepsilon_2).$

Some notations

Some notations

$$egin{aligned} E_1(t) &= 2lpha t - rac{\Delta(arepsilon_1arepsilon_2t)}{arepsilon_1arepsilon_2}, & f_1(t) &= rac{d}{dt}E_1(t), \ E_2(t) &= 4Et + 2lpha t + rac{\Delta(arepsilon_1arepsilon_2t)}{arepsilon_1arepsilon_2}, & f_2(t) &= rac{d}{dt}E_2(t), \end{aligned}$$

$$A(E) = \begin{pmatrix} 0 & e^{iE} \\ e^{-iE} & 0 \end{pmatrix}, \qquad B(E) = \begin{pmatrix} 0 & -ie^{iE} \\ ie^{-iE} & 0 \end{pmatrix}.$$

In terms of these new notations, we can rewrite the Hamiltonian in the interaction frame :

$$H_{\mathrm{I}}(t) = \varepsilon_1 u(\varepsilon_1 \varepsilon_2 t) A(E_1(t)) + \varepsilon_1 u(\varepsilon_1 \varepsilon_2 t) A(E_2(t)), \quad t \in [0, \frac{1}{\varepsilon_1 \varepsilon_2}].$$

15 / 29

< 157 ▶

A technical lemma

Let $\alpha \in (v_0, v_1)$ and assume that $E + \alpha > 0$ and $4E - 3\Delta'(s) > 2\alpha$ for every $s \in [0, 1]$. Then, for every $N_0 \in \mathbb{N}$ there exists a Hamiltonian H_{RWA} of the form

$$H_{\text{RWA}}(t) = \varepsilon_1 h_1(\varepsilon_1 \varepsilon_2 t) A(E_1(t)) + \varepsilon_1^2 h_2(\varepsilon_1 \varepsilon_2 t) B(E_1(t)) + \varepsilon_1^2 h_3(\varepsilon_1 \varepsilon_2 t) \sigma_z,$$

with h_1, h_2, h_3 polynomials in $(\varepsilon_1, \varepsilon_2)$ with coefficients in $\mathcal{C}^{\infty}([0, 1], \mathbb{R})$, such that the solution ψ_{RWA} of the Cauchy problem

$$i \frac{d}{dt} \psi_{\text{RWA}} = H_{\text{RWA}} \psi_{\text{RWA}}, \qquad \psi_{\text{RWA}}(0) = \psi_{\text{I}}(0),$$

satisfies $|\psi_{\text{RWA}}(\frac{1}{\varepsilon_1\varepsilon_2}) - \psi_{\text{I}}(\frac{1}{\varepsilon_1\varepsilon_2})| = O(\varepsilon_1^2\varepsilon_2 + \varepsilon_1^{N_0-1}/\varepsilon_2)$. More precisely, there exist $h_{j,p,q} \in C^{\infty}([0,1],\mathbb{R})$, for j = 1, 2, 3, $p = 0, \ldots, N_0$, and q = 0, 1, such that

An
$$h_1 = u + \sum_{p=1}^{N_0} \sum_{q=0}^1 \varepsilon_1^p \varepsilon_2^q h_{1,p,q}$$
 with $h_{1,p,0}(0) = h_{1,p,0}(1) = 0$,
 An $h_2 = \sum_{p=0}^{N_0} \sum_{q=0}^1 \varepsilon_1^p \varepsilon_2^q h_{2,p,q}$ with $h_{2,p,0}(0) = h_{2,p,0}(1) = 0$,
 An $h_3 = \sum_{p=0}^{N_0} \sum_{q=0}^1 \varepsilon_1^p \varepsilon_2^q h_{3,p,q}$ with $h_{3,p,0}(0) = h_{3,p,0}(1) = 0$.

Lemma

There exists $\delta > 0$ such that ψ_{RWA} satisfies $|\psi_{\text{RWA}}(\frac{1}{\varepsilon_1\varepsilon_2}) - (e^{i\theta}, 0)| \le M\varepsilon_2/\varepsilon_1$ for some $\theta \in \mathbb{R}$.

A new change of variable: $\psi_{
m slow}(t) = U(t)\psi_{
m RWA}(t)$ with

$$U(t) = \begin{pmatrix} e^{i(\alpha t - \frac{\Delta(\epsilon_1 \epsilon_2 t)}{2\epsilon_1 \epsilon_2})} & 0\\ 0 & e^{-i(\alpha t - \frac{\Delta(\epsilon_1 \epsilon_2 t)}{2\epsilon_1 \epsilon_2})} \end{pmatrix}$$

The new Hamiltonian depends only on $s = \varepsilon_1 \varepsilon_2 t$.

$$\mathcal{H}_{ ext{slow}}(s) = arepsilon_1 h_1(s) \sigma_x + arepsilon_1^2 h_2(s) \sigma_y + \left(lpha - rac{\Delta'(s)}{2} + arepsilon_1^2 h_3(s)
ight) \sigma_z.$$

$$\tilde{H}_{
m slow} = arepsilon_1 u \sigma_x + (lpha - \Delta'/2) \sigma_z$$

Let $P_{\varepsilon_1,\varepsilon_2}$ be the spectral projector on the negative eigenvalue of $H_{\rm slow}.$ Then :

• $|P_{\varepsilon_1,\varepsilon_2}(0) - P_{e_1}| = O(\varepsilon_1^2 \varepsilon_2)$ and $|P_{\varepsilon_1,\varepsilon_2}(1) - P_{e_2}| = O(\varepsilon_1^2 \varepsilon_2)$, where P_{e_i} is the orthogonal projector on $\mathbb{C}e_i$;

$$\ \ \, \mathbf{ 3} \ \ \, \int_0^1 |(\frac{d^2}{ds^2} P_{\varepsilon_1,\varepsilon_2})(s)| ds = O(1/\varepsilon_1);$$

$$\begin{split} |\psi_{\mathrm{RWA}}(\frac{1}{\varepsilon_{1}\varepsilon_{2}}) - (e^{i\theta}, 0)| &\leq \varepsilon_{1}\varepsilon_{2} \Big[\frac{|\frac{d}{ds}P_{\varepsilon_{1},\varepsilon_{2}}(1)|}{\omega_{\varepsilon_{1},\varepsilon_{2}}(1)} + \frac{|\frac{d}{ds}P_{\varepsilon_{1},\varepsilon_{2}}(0)|}{\omega_{\varepsilon_{1},\varepsilon_{2}}(0)} \\ &+ \int_{0}^{1} \Big(\frac{2|\frac{d}{ds}P_{\varepsilon_{1},\varepsilon_{2}}(s)|^{2}}{\omega_{\varepsilon_{1},\varepsilon_{2}}(s)} + \frac{|\frac{d^{2}}{ds^{2}}P_{\varepsilon_{1},\varepsilon_{2}}(s)|}{\omega_{\varepsilon_{1},\varepsilon_{2}}(s)} + \frac{|\frac{d}{ds}P_{\varepsilon_{1},\varepsilon_{2}}(s)||\frac{d}{ds}H_{\mathrm{slow}}(s)|}{2\omega_{\varepsilon_{1},\varepsilon_{2}}(s)^{2}} \Big) ds \Big], \end{split}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Summary of the proof

- Thanks to the assumption $3(E + v_0) \ge E + v_1$, it is possible to define a N_0 th averaging approximation thanks to an algorithm.
- The complicated Hamiltonian dynamics we obtain stays close to the one of the first order RWA Hamiltonian.
- Convergence of the population transfer for the first order RWA hamiltonian dynamics is ensure when $\varepsilon_2 \ll \varepsilon_1$.

 $\varepsilon_1 = 0.5$ and $\varepsilon_2 = 0.1$. In thick line are the trajectories corresponding to the equivalent 1st order RWA system.

 $\varepsilon_1\varepsilon_2 = 0.05$, $\alpha = 0$. In thick line are the trajectories corresponding to the equivalent 1st order RWA system and in dotted line the theoretical AA trajectories.

Log of the distance from $\psi^0_{\varepsilon_1,\varepsilon_2}(1/\varepsilon_1\varepsilon_2)$ to the orbit of (1,0).

23 / 29

Li-Khaneja

Let $\mathcal{D} = [E_m, E_M] \times [\delta_m, \delta_M]$ be the compact set of the dispersion parameters and endow $\mathcal{F} := C^0(\mathcal{D}, \mathrm{SU}_2)$ with the usual distance $d_{\mathcal{F}}(f, g) := \max_{d \in \mathcal{D}} \|f(d) - g(d)\|.$

[Li–Khaneja, 2009]

For any control bound K > 0, any target distribution $M_F \in \mathcal{F}$, and any $\varepsilon > 0$, there exist some T > 0 and controls $u, v \in L^{\infty}([0, T], [-K, K])$ such that the solution of the equation

$$i\frac{d}{dt}M(E,\delta,t) = (E\sigma_z + \delta u(t)\sigma_x + \delta v(t)\sigma_y)M(E,\delta,t),$$
$$M(E,\delta,0) = I_2, \quad \forall (E,\delta) \in \mathcal{D}$$

satisfies $d_{\mathcal{F}}(M(\cdot, \cdot, T), M_{\mathcal{F}}(\cdot, \cdot)) < \varepsilon$.

Theorem

Suppose $3E_m > E_M$, let $\mathcal{D} = [E_m, E_M] \times [\delta_m, \delta_M] \subset \mathbb{R}^*_+ \times \mathbb{R}^*_+$. Fix $\epsilon > 0$, $M_F \in \mathcal{F}$ and K > 0. Then there exist T > 0 and $u \in L^{\infty}([0, T], [-K, K])$ such that the solution of the ensemble control problem

$$\frac{d}{dt}M(E,\delta,t) = (E\sigma_z + \delta u(t)\sigma_x)M(E,\delta,t),$$
(1)
$$M(E,\delta,0) = I_2, \forall (E,\delta) \in \mathcal{D}$$
(2)

satisfies $||M(\cdot, \cdot, T) - M_F(\cdot, \cdot)||_{\mathcal{F}} < \varepsilon$.

Corollary of AA+RWA part

Suppose that $3E_m > E_M$. Then, for any K > 0 and any $\varepsilon > 0$, there exist T > 0 and a control $u \in L^{\infty}([0, T], [-K, K])$ such that the solution of Equation (1) satisfies $\max_{(E,\delta)\in\mathcal{D}} \min_{\theta\in[0,2\pi]} \|M(E,\delta,T)(0,1)^T - (e^{i\theta},0)^T\| < \varepsilon.$

Reachable propagators

Let $\mathcal{R} = \{M(\cdot, \cdot, T) \mid T > 0, M \text{ is a solution of (1) for some } u \in L^{\infty}([0, T], [-K, K])\}$

- For all t in \mathbb{R} , $(E, \delta) \mapsto e^{-itE\sigma_z}$ is in $\overline{\mathcal{R}}$,
- Let $u \in \mathbb{R}$. Then $(E, \delta) \mapsto e^{u \delta i \sigma_x}$ is in $\overline{\mathcal{R}}$.

A Lie Algebra (of infinite dimension)

Let

$$\mathfrak{g} = \{ X \in \mathcal{C}^0(\mathcal{D},\mathfrak{su}_2) \mid \forall t \in \mathbb{R}, \ e^{tX} \in \bar{\mathcal{R}} \}.$$

, Then ${\mathfrak{g}}$ is stable under brackets and addition.

for any $n, m \in \mathbb{N}$, and any sequence $(b_{k,l})_{k,l}$

$$\sum_{k=0}^{m} \sum_{l=0}^{n} b_{k,l} \delta^{2k+2} E^{2l+1} i \sigma_{x} \in \mathfrak{g},$$
$$\sum_{k=0}^{m} \sum_{l=0}^{n} c_{k,l} \delta^{2k+1} E^{2l+1} i \sigma_{y} \in \mathfrak{g},$$
$$\sum_{k=0}^{m} \sum_{l=0}^{n} d_{k,l} \delta^{2k+1} E^{2l+2} i \sigma_{z} \in \mathfrak{g}.$$

 $\implies (\text{Stone-Weierstrass}) : \text{ for any continuous functions } f(d)\sigma_* \in \mathfrak{g}.$ $\implies (\text{connectedness of } \mathcal{F}) : \overline{\mathcal{R}} = \mathcal{F}$

A few open questions

- Under the assumption 3E_m > E_M can we prove convergence for a fixed ε₁?
- What happen in higher dimension? In infinite dimension? We expect the method to work but with conditions depending of N_0 .
- Can we extend the controllability result without the assumption $3E_m > E_M$?
- Is there a more efficient way to prove the ensemble controllability (e.g. smaller controllability time).

Thank you for your attention !