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@ Introduction : RWA and AA
e Compatibility of the two approximations

© The ensemble control problem
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Spin dynamics

2-level system (Qubit)

Cauchy problem associated with Schroedinger equation :
i0wp(t) = H(t)y(t), (0) = o
to| = 1, H(t) is self-adjoint.

where 1)y € C?,

a b+ ic
— ic —a

H(E = (

) = ao, + box + co,.

| A

exemple of physical interpretation

In NMR, a, b, c are respectively the strength of the magnetic field along
Z7 X7 .y'
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Population transfer

Statement of the problem

Let E > 0 (strength of the z magnetic field),—E < ap < 0 < a3 the
dispersion parameters. For all a € [ag, a1], let

Ho‘(v):<E+a v )

v* —E -«

For any € > 0, can we find T > 0 and w € C%([0, T],K) such that the
solutions of

i0py, = H*(w(t))dl, ¥ (0) = e
satisfies Yo € [, ], 30, [12(T) — ePe| < €?

R. Robin (LJLL) Ensemble qubit controllability with a single cc September 13, 2021 4/29



Population transfer

Statement of the problem

Let E > 0 (strength of the z magnetic field),—E < ap < 0 < a3 the
dispersion parameters. For all a € [ag, a1], let
E+a v
(0% —
H(V)_< v* —E—a)'
For any € > 0, can we find T > 0 and w € C%([0, T],K) such that the
solutions of

iOuy, = H*(w(t))yy,  ¢¥iy(0) = e
satisfies Vo € [ag, 1], 30, [0%(T) — efey| < €?

Remarks
@ This is an ensemble control problem.
@ For K = C we can use standard adiabatic theory.

e For K =R, physicists use the Rotating Wave Approximation (RWA)
to 'duplicate’ a real control into complex one.

V.
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Adiabatic Approximation

Interaction frame
Let us choose the pulse w in the form

W(t) _ u(t)e_i(ZEH_A(t)),

where, u(-) and A(-) are two real-valued smooth functions. Applying the
change of variables

o i(EtHA(1)/2) 0
P(t) = ( 0 oi(Et+A(1)/2) )‘U(f)»

we obtain
dv ( a— v(t) u(t) )\U

"ar T\ u(t) —a+v(t)
where v(t) := A/(t)/2.
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Adiabatic Approximation

Adiabatic Approximation

Let Hy(u,v) = (oo — v)o, + uox. The eigenvalues of H,(u, v) are
+4/(a — v)? + 2.

>
<

U1

Initial and finite time Hamiltonian

2

(u(t), v(t))

Ha(0, v0) = ( : B K —a?i— Vo ) -

a0 = (“5" %)
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Adiabatic Approximation

Adiabatic control

Let vp, v1 € R be such that vy < ap and a3 < v1 and consider a smooth
path t — (u(t), v(t)) lying in the half-plane u > 0 except for the initial
and final points, where u = 0.

Theorem

There exists C > 0 such that, for every a € [, 1] and every € > 0, the
solution ¥g of

dV ( a — ve(t) u:(t)

gt =T n®) . e )V O =<

with u-(t) = u(et) and v.(t) = v(et) satisfies |W(T /e) — (!,0)| < Ce
for some 6.
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Rotating Wave Approximation

Consider the controls

w.(t) = 2eu(et) cos(2Et + A(et)),

wl(t) = su(st)e_i(ZEt+A(€t)).

In the case where o« = 0, the evolution associated with the real control in
the interaction frame is

/% :g[( —AN(et)/2  u(et) )+

dt u(et) A(et)/2
0 ei(4Et+2A(st)) U(Et) R
( e~ i(4EL28(e1) (o 1) 0 )} Yw. -
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Rotating Wave Approximation

Motivation
Consider the controls

w.(t) = 2eu(et) cos(2Et + A(et)),

Wf”(t) = 5u(5t)e_i(2Et+A(€t)).

In the case where a@ = 0, the evolution associated with the complex
control in the interaction frame is

dOR - A(et)/2 uet) N
Tt =( u(;) A'(;t)/z )P
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Rotating Wave Approximation

Let & =0, 9y, and wﬁg the evolution of some g with the control w, and
w2, Then there exist C > 0 such that

vt € [0, T/e], [thu.(t) = Yur(t)] < Ce.
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Comparison of the two approximations

RWA

The control

w.(t) = 2eu(et) cos(2Et 4+ A(et)),
)e—i(2Et+A(st))‘

<
=
=

I

cu(et

give the same dynamics to an order € in a Time T /e. Higher order
averaging (add a correction on the Hamiltonian) allow the same order of
approximation on T /.

Ja¥al

the control

| \

Wg(t) _ Us(t)e_i(2Et+A(€t)/6),

ensure a population transfer for all « up to an order in ¢ in time T /e.

\

R. Robin (LJLL) Ensemble qubit controllability with a single cc September 13, 2021 11/29



Take v small and use

w.(t) = u(t)2 cos(2Et 4+ A(et)/e) to simulate u,(t)e (CEHAEL)/E),

Pb: simulations seem to show that it does not work in general.

wl Comparison of the real-valued and

0o complex-valued chirp scheme of the
§ ‘ . first point with E = 0.75, o = 0.25,

] . . . e1=1, vy =-0.5, vy =0.5.

00 o Compiscraued etermal el B

100 1071 102
&
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The dilemma

You need small control and not too long final time.

The smaller the control, the longer time you need.
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Compatibility

The control

A(€1€2t))

We, e, (t) = 2equ(e1€2t) cos (2Et L P

Theorem
Assume that vy < 0 < vq are such that 3(E + vp) > E + v;. Choose T and
u, A : [0, T] — R smooth enough (e.g., u € C? and A € C3) such that

O (u(0),A’(0)) = (0,2vp) and (u(T),A'(T)) = (0,2w1);

@ Vse (0, 7),u(s) >0and A”(s) > 0.
Denote by 92, ., the solution with initial condition 92 _ (0) = (0,1) and
external field w;, .,. Then, for every Ny € N, for every compact interval

I C (vo, v1), there exist Cp, > 0 and § > 0 such that for every a € | and
every (e1,e2) € (0, 5)2 there exists 0 such that

|08 ,(1/2162) — (¥, 0)] < Cyy max(ez/en,e1° " /e2).

| \
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Some notations

Some notations

A(8182t) d
Ei(t) =2at — ———~2 fi(t) = —E{(t
1(t) = 20 p— 1(t) = L E(1),
A(eieat) d
E>(t) = 4Et + 2at _— Hr(t) = — t
0 €F 0 —ieE
AlE) = ( e 0 ) B(E) = ( ie"® 0 )

In terms of these new notations, we can rewrite the Hamiltonian in the
interaction frame :

1
£1E2

HI(t) = €1u(61€2t)A(E1(t)) aF €1u(€162t)A(E2(t)), t e [0, ]
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A technical lemma

Let a € (vo, v1) and assume that E + « > 0 and 4E — 3A/(s) > 2« for
every s € [0,1]. Then, for every Ny € N there exists a Hamiltonian Hgrwa
of the form

HRWA(t) = €1h1(€1€2t)A(E1(t)) + €%h2(6162t)B(E1(t)) + 6%/73(51521‘)02,
with hy, ha, h3 polynomials in (£1,£2) with coefficients in C*°([0, 1], R),
such that the solution Y¥rwa of the Cauchy problem

i%@DRWA = HrRwAYRWA, Yrwa (0) = ¥1(0),

satisfies WRWA(i) - ¢1($)| = O(e2e5 + 071 /ey). More precisely,
there exist hjp q € C*([0,1],R), for j=1,2,3, p=0,..., Ny, and
g = 0,1, such that

@ hy=u+ 300 Yo eledhipg with hpo(0) = hipo(1) =0,
@ hy =000 Y oehedho pq with hypo(0) = hopo(1) =0,
© hy =30 Sh_gehedhs pq with hs po(0) = hs po(1) = 0.
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The toward the AA part

There exists 0 > 0 such that Yrwa satisfies
|¢RWA($) — (€?,0)| < Mey/e; for some 0 € R.

A new change of variable: 10w (t) = U(t)Yrwa(t) with

. _ A(egent)
e/(at 2res ) 0
U(t) = —i(at— A(ele2t)) .
O e 2eq€ep

The new Hamiltonian depends only on s = g1e5t.

AN(s
Hgiow(s) = e1h1(s)ox + 6%h2(s)o'y + (a — 2() + 6%h3(5))0z-

Hyow = e1uoy + (a — A'/2)o,
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some other technical estimates

Let P., ., be the spectral projector on the negative eigenvalue of Hgjgy,.
Then :

Q [Pe,(0) — Pe| = O(e3e2) and |Peyes(1) — Pe,| = O(efe2), where
Pe, is the orthogonal projector on Ce;;

o fo 51,52)(5)|2ds = 0(1/51);
o/ \(dsz Pe, e,)(s)lds = O(1/e1);
© o lomtep e Pevea (8l gk Hatow(s)l ds = O(1/¢3).

Weq ey (
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1 i 4p 1 dp 0
|1/1RWA(7) —(e,0)| < e162 g5 Perea(1)] n | 35 Pe1.e2 (0)]

£1&2 - w€1,€2(1) w€1,€2(0)
+/1 (2|(§,15P€1752( )| |d52 Pey e, (s)] n |jspshz-:z(s)HjsHsloW(SN)ds]
0 w€17€2(5) w€1,€2(5) 2W€1,€2(S)2 ’
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Summary of the proof

Summary of the proof

@ Thanks to the assumption 3(E + vg) > E + vy, it is possible to define
a Npth averaging approximation thanks to an algorithm.

@ The complicated Hamiltonian dynamics we obtain stays close to the
one of the first order RWA Hamiltonian.

@ Convergence of the population transfer for the first order RWA
hamiltonian dynamics is ensure when &7 < ;.

R. Robin (LJLL) Ensemble qubit controllability with a single cc September 13, 2021 20/29



10F T
— alpha =-0.3 'r"
— alpha=20 1k II‘Hl“
— alpha=0.3 [
0.8 P
0.6
2
o
=4
[
04+t
0.2F
N
0.0 e ) . .
0.0 0.2 0.4 0.6 0.8 1.0

times

€1 = 0.5 and €2 = 0.1. In thick line are the trajectories corresponding to
the equivalent 1st order RWA system.
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0.0 0.2 0.4 0.6 0.8 L0
times

€162 = 0.05, a = 0. In thick line are the trajectories corresponding to the
equivalent 1st order RWA system and in dotted line the theoretical AA
trajectories.
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-logl0 of the error
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Log of the distance from 42 _ (1/e1¢2) to the orbit of (1,0).
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Li-Khaneja

Let D = [Em, Em] X [0m, Om] be the compact set of the dispersion
parameters and endow F := C%(D, SU,) with the usual distance

dr(f,g) := maxqep || f(d) — g(d)]|.
[Li-Khaneja, 2009]
For any control bound K > 0, any target distribution Mg € F, and any

e > 0, there exist some T > 0 and controls u,v € L>([0, T],[-K, K])
such that the solution of the equation

i%M(E, 5,t) = (Eoy + Su(t)ox + 5v(t)o,)M(E, 5, £),
M(E,5,0) = b, (E,5)eD

satisfies dr(M(-,-, T), Mg(-,-)) < €.
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Generalisation of Li-Khaneja

Theorem

Suppose 3E;, > Ep, let D = [Emy, Ep] X [0m, dm] C R x R
Fix e >0, Mf € F and K > 0. Then there exist T > 0 and

u € L*=([0, T],[—K, K]) such that the solution of the ensemble control
problem

%M(E, 5,t) = (Ecy + 6u(t)o)M(E, 5, £),
M(E, 5,0) = b, ¥(E, ) € D

satisfies [|M(-,-, T) — Mg(-,")||7 < e.
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Corollary of AA+RWA part

Suppose that 3E,, > Ep. Then, for any K > 0 and any € > 0, there exist
T > 0 and a control u € L*=([0, T],[—K, K]) such that the solution of
Equation (1) satisfies

Max(g,5)eD min9€[0,2ﬂ'] HM(E?(Sv T)(O7 l)T - (em?O)T“ <e.
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Reachable propagators

Let R ={M(-,-, T)| T >0, M is a solution of (1) for some u €
L>=([o, T1, [-K, KI)}

o Forall tinR, (E,d8) r e % is in R,

o Let u € R. Then (E,§) > e®iox isin R.

\

A Lie Algebra (of infinite dimension)

Let
g={X eC%D,su,) |Vt € R, e € R}.

, Then g is stable under brackets and addition.

N,
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for any n,m € N, and any sequence (b /),

m n
Z Z bk7/52k+2E2l+1iO'X €y,
k=0 I_O

m

Z ZC 52k+1E2/+1IU €,

o
Z 52k+1E2l+2IO_ €g.

(Stone-Weierstrass) : for any continuous functions f(d)o. € g.
(connectedness of F) : R = F
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Conclusion

A few open questions

@ Under the assumption 3E,, > Eps can we prove convergence for a
fixed €17

@ What happen in higher dimension? In infinite dimension? We expect
the method to work but with conditions depending of Nj.

@ Can we extend the controllability result without the assumption
3En > Em?

@ Is there a more efficient way to prove the ensemble controllability
(e.g. smaller controllability time).

Thank you for your attention !
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