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Nuclear fusion confinement

Goal : Confine a plasma of approx. 150 millions K for as long as
possible with a density as high as possible in order to achieve fusion
ignition.

Solution : A plasma is made of ionized particules, thus interacts with
a magnetic field.

Figure: magnetic field lines inside a Tokamac, Inria team TONUS
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Stellarators

Stellarator approach : The magnetic confinement relies mainly on external
coils.

Figure: Wendelstein 7-X, Max-Planck Institut für Plasmaphysik

The plasma shape and the coils are obtained by several optimizations.
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Typical approach

1 Find a good magnetic field to ensure the plasma confinement.

2 We use a ’Coil winding surface’ and find a current-sheet to generate
the given Btarget .

3 (Approximate the current-sheet by several coils)

Figure: Coil winding surface and plasma surface of the NCSX Stellarator.
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The magnetic field generated by the electric currents on the CWS
(denoted S).

Biot-Savart law in vacuo

∀y 6∈ S ,B(y) = BS(j)(y) =

ˆ
S
j(x)× y − x

|y − x |3
dS(x), (1)

The figure of merit we use to ensure B ≈ Btarget is

plasma-shape objective

χ2
B(j) =

ˆ
P
|BS(j)(y)− Btarget(y)|2dy (2)

The goal

inf
j∈L2(X(S))

div j=0

χ2
B(j) (3)
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An inverse problem

BS(·) is continuous from L2(X(S))→ C k(∂P,R3)
=⇒ j 7→ BS(j) is compact (from L2(X(S))→ L2(P,R3)).

Use a finite dimensional subspace [2].

Use a Tychonoff regularization [1].

χ2
j =

ˆ
S
|j |2dS . (4)

Lemma

For any λ > 0, the problem

inf
j∈L2(X(S))

div j=0

χ2
B + λχ2

j (P)

admits a unique minimizer.
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Motivations

Building a Stellarator is expensive. . .

compact Stellarators require higher magnetic field

Higher magnetic fields call for higher currents

=⇒ The Laplace forces ( ~dF = i ~dl ∧ ~B) grew quadratically.

=⇒ The Laplace forces must be optimized.

Problem

How can we define the Laplace forces on a current-sheet?
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Statement of the problem

Let S a toroidal surface and j ∈ X(S) a vector field.

Biot and Savart

∀y 6∈ S ,B(y) = BS(j)(y) =

ˆ
S
j(x)× y − x

|y − x |3
dS(x),

Not integrable

B is not defined on S , indeed for any y ∈ S ,

ˆ
S

1

|x − y |2
dx =∞

There is a magnetic discontinuity on the surface given by

B1
T − B2

T = n12 ∧ j .
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About the Laplace forces

B does not blow up near S .

The discontinuity of B is responsible for a normal force proportional
to |j |2 trying increase the thickness of S.

Average Laplace forces

We focus on the other contributions of the Laplace forces, and therefore
we define:

Lε(j)(y) =
1

2
(j ∧

[
B(j)(y + εn(y)) + B(j)(y − εn(y))

]
)

L(j) = lim
ε→0

Lε(j)
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This definition raises several questions:

1 Under which assumptions on j can we ensure that L(j) is well defined?

2 Can we find an explicit expression of L(j) (i.e. without a limit on ε)?

3 Which functional space does L(j) belong to (for j in a given
functional space)?

A 3 scales problem

To compute L from Lε, we need 3 scales :

1 the discretisation-length of S : h,

2 the infinitesimal displacement ε,

3 the characteristic distance of variation of the magnetic field, dB .

With :

h� ε as
´
S |y + εn(y)− x |−2dS(x) blows up when ε→ 0.

ε� dB to approximate L.
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Theorem

Theorem [3]

Suppose j1, j2 ∈ X1,2(S), then Lε(j1, j2) has a limit in Lp(S ,R3) for any
1 ≤ p <∞ when ε→ 0, denoted L(j1, j2). Besides, L is a continuous
bilinear map X1,2(S)× X1,2(S)→ Lp(S ,R3) given by

L(j1, j2)(y) =−
ˆ
S

1

|y − x |
[

divx(πx j1(y)) + πx j1(y) · ∇x

]
j2(x)dx (5)

+

ˆ
S
〈j1(y) · n(x)〉〈y − x , n(x)〉

|y − x |3
j2(x)dx (6)

+

ˆ
S

1

|y − x |
[
〈j1(y) · j2(x)〉 divx(πx) +∇x〈j1(y) · j2(x)〉

]
dx

(7)

−
ˆ
S
〈j1(y) · j2(x)〉〈y − x , n(x)〉

|y − x |3
n(x)dx (8)
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Ideas of the proof

Note that y−x
|y−x |3 = −∇x

1
|y−x | .

Do an integration by part on the tangential component of the
gradient.

Use some estimates when ε is small to eliminate the part responsible
for the magnetic discontinuity.

Tools : Hardy-Littlewood-Sobolev inequality and Sobolev embeding on
compact manifold.

R. Robin (LJLL, Sorbonne Université) bobines de stellarators June 22, 2021 15 / 26



Optimization

We introduce the following costs:

χB to ensure that we produce the magnetic field chosen :

χ2
B =

ˆ
∂P
〈B(x) · n(x)〉2dS(x)

A penalization term on j

χ2
j =

ˆ
S
|j |2dS

χ2
∇j =

ˆ
S

(|∇jx |2 + |∇jy |2 + |∇jz |2)dS .

A penalizing term on the Laplace forces, for example Lp(S ,R3)

|L(j)|Lp =
( ˆ

S
|L(j)|p2

)1/p
dS

Thus, we will minimize the new cost with relative weights λ1, λ2, γ ≥ 0.

χ2 = χ2
B + λ1χ

2
j + λ2χ

2
∇j + γ|L(j)|Lp
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Lemma

Suppose λ1, λ2, γ > 0 and p <∞ then

inf
j∈E

χ2
B + λ1χ

2
j + λ2χ

2
∇j + γ|L(j)|Lp

admit a minimizer.

We also introduce a cost to penalize only high values of the forces:
Ce =

´
S fe(|L(j)|)
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Case λ1 λ2 γ χ2
F

(T2 m2/A2) (T2 m4/A2) (T2/Pa2)

1 1.5 · 10−16 0 0 0

2 0 0 10−17 |L(j)|2
L2(S,R3)

3 0 0 10−16 Ce

4 10−19 10−19 10−16 Ce

(9)
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We want to optimize on both the current sheet and the Coil Winding
Surface.

Admissible shapes

Topology of a torus

Regular enough

Far enough to the plasma

Shape optimization problem

inf
S admissible

(
inf

j∈L2
0(X(S))

χ2
B + λχ2

j

)
(SOP)
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Some preliminary numerical results : λ = 2.5e−16

Costs

Name χ2
B |Berr |∞ χ2

j |j |∞ EMcost

ref 4.80 · 10−3 5.15 · 10−2 1.43 · 1014 7.42 · 106 4.06 · 10−2

DPC 1.23 · 10−3 3.20 · 10−2 9.48 · 1013 5.99 · 106 2.49 · 10−2

Geometry

Name Distance (m) Perimeter (m2) Maximal curvature (m−1)

Ref 1.92 · 10−1 5.57 · 101 1.19 · 101

DPC 1.99 · 10−1 5.60 · 101 1.30 · 101
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Prospects

Proof of existence of a solution to the shape optimisation problem,

Collaboration with Renaissance fusion for industrial applications,

Laplace forces in the shape optimisation.
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