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1Université de Strasbourg
2Inria Paris
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A shape functional

For Ω regular enough,

F (Ω) =

ˆ
∂Ω

j(x , ν∂Ω(x),B∂Ω(x)) dµ∂Ω(x),

ν∂Ω is the normal outward vector,

B∂Ω(x) is either a geometric quantity (mean curvature, Gauss curvature . . . )
or the solution of a PDE defined on Ω or ∂Ω.

Existence of minimisers
Can we find Ω∗ ∈ Oadm such that

F (Ω∗) = inf
Ω∈Oadm

F (Ω)?
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Uniform ball property

Ω ∈ Or0 if an only if Ω ⊂ D compact, ∀x ∈ ∂Ω,

∃dx ∈ Rn | ‖dx‖Rd = 1, Br0 (x − r0dx) ⊂ Ω and Br0 (x + r0dx) ⊂ Rn\Ω.

Figure taken from [Dal18].
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Existing results

Theorem (Guo-Yang, 2013)

Let j be a continuous function from Rd × Sd−1 to R, then the following
optimization problem

inf
Ω∈Or0

ˆ
∂Ω

j(x , ν(x))dµ∂Ω(x)

admits a minimiser.

Theorem (Dalphin, 2018)

Let j be a continuous function from Rd × Sd−1 × R and convex with respect to
the last variable, then the following optimization problem

inf
Ω∈Or0

ˆ
∂Ω

j(x , ν(x),H∂Ω(x))dµ∂Ω(x)

admits a minimiser.
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Let h ∈ L2(D), g ∈ H2(D), and define uΩ as the solution of{
∆uΩ = h in Ω,
uΩ = g in ∂Ω.

Theorem (Dalphin, 2020)

Let j be a continuous function from Rd × Sd−1 × R× Rd , then the following
optimization problem

inf
Ω∈Or0

ˆ
∂Ω

j(x , ν(x), uΩ(x),∇uΩ(x)) dµ∂Ω(x)

admits a minimiser.
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The direct method of calculus of variations

1 Define a (sequential) topology on Or0 .

2 Take a minimizing sequence and use a compactness result

3 Prove the lower-semicontinuity of the functional
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Characterization of a set

Distances functions

dΩ(x) = inf
y∈Ω
‖x − y‖

bΩ(x) = dΩ(x)− dRd\Ω(x)

Some properties

For x ∈ ∂Ω, ∇bΩ(x) is the unit outward normal vector,

For x ∈ ∂Ω, Tr(∇2bΩ(x)) is the mean curvature,

etc.
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Uniform reach property

Definition

Reach(Ω) = sup{h > 0 | dΩ is differentiable in Uh(Ω) \ Ω}.

Assume Reach(∂Ω) = r0 > 0, we have

if Hd(∂Ω) = 0, then ∂Ω is a C 1,1 hypersurface of Rd and satisfies the
uniform ball property.

For h < r0, ∇bΩ is 2
r0−h -Lipschitz continuous on the tubular neighborhood

Uh(∂Ω).

The restriction of ∇bΩ to ∂Ω is 1
r0

-Lipschitz continuous.
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R-convergence in Or0

Given (Ωn)n∈N ∈ ON
r0

, we say that (Ωn)n∈N R-converges to Ω∞ ∈ Or0 and we

write Ωn
R−→ Ω∞ if

bΩn → bΩ∞


in C (D),

in C 1,α(Ur (∂Ω∞)), ∀r < r0, ∀α ∈ [0, 1),

weakly-star in W 2,∞(Ur (∂Ω∞)), ∀r < r0.

Theorem
Or0 is sequentially compact for the R-convergence.
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Tubular neighboorhood

For 0 < h < r0, consider

T∂Ω : (−h, h)× ∂Ω → Uh(∂Ω)
(t, x) 7→ x + t∇bΩ(x).

Since T∂Ω is Lipschitz continuous, it is differentiable at almost every (t0, x0), with

d(t0,x0)T∂Ω(s, y) = y + s∇bΩ(x0) + t0dx0∇bΩ(y), ∀(s, y) ∈ R× Tx0∂Ω.

Lemma
For every ε > 0, there exists h > 0 such that for all Ω ∈ Or0 ,

1− ε ≤ det(d(t0,x0)T∂Ω) ≤ 1 + ε, for a.e. (t0, x0) ∈ (−h, h)× ∂Ω.

R. Robin (LJLL, Sorbonne Université) Existence of surfaces optimizing geometric and PDE shape functionals under reach constraintJune 2nd, 2022 15 / 27



Lemma

If Ωn
R−→ Ω∞ then

1 Hd−1(∂Ωn) converges toward Hd−1(∂Ω∞) as n→ +∞.

2 Hd(Ωn) converges toward Hd(Ω∞) as n→ +∞.

3 If all the ∂Ωn belong to the same isotopic class, then ∂Ω∞ also belongs such
a class.

Corollary

{Ω ∈ Or0 | a ≤ Hd−1(∂Ω) ≤ b, ∂Ω is isotopic to ∂Ω0}

is sequentially compact
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Hd−1(∂Ωn) =

ˆ
∂Ωn

dµ∂Ωn(x) =
1

2h

ˆ
Uh(∂Ωn)

det(dTn) dy

=
1

2h

ˆ
Uh−t(∂Ω∞)

det(dTn) dy +
1

2h

ˆ
Uh(∂Ωn)\Uh−t(∂Ω∞)

det(dTn) dy

Hd−1(∂Ω∞) =
1

2(h − t)

ˆ
Uh−t(∂Ω∞)

det(dT∞) dy

For any h, t small enough, there exists N0 such that for all n ≥ N0,

Hd−1(∂Ωn) = (Hd−1(∂Ω∞) + O(h))
(

1 + O
( t
h

))
+
(

oh→0(1) + O
( t
h

))
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Let j be a continuous function from Rd × Sd−1 × R and convex with respect to
the last variable.

F (Ω) =

ˆ
∂Ω

j(x , ν(x),H∂Ω(x))dµ∂Ω(x)

Theorem
F is a lower-semicontinuous shape functional for the R-convergence, i.e., for every
sequence (Ωn)n∈N ∈ ON

r0
that R-converges toward Ω∞, one has

lim inf
n→+∞

F (Ωn) ≥ F (Ω∞).

As a consequence, the shape optimization problem

inf
Ω∈Or0

F (Ω)

has a solution.
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F (Ωn) =

ˆ
∂Ωn

j(x ,∇bΩn(x),H∂Ωn(pn(y)))dµ∂Ωn(x)

=
1

2h

ˆ
Uh(∂Ωn)

j(pn(y),∇bΩn(pn(y)),H∂Ωn(pn(y))) det(dT−1
n (y)Tn) dy .

F (Ωn) =
1

2h

ˆ
Uh−t(∂Ω∞)

j(pn(y),∇bΩn(pn(y)),H∂Ωn(pn(y))) det(dTn) dy

+
1

2h

ˆ
Uh(∂Ωn)\Uh−t(∂Ω∞)

j(pn(y),∇bΩn(pn(y)),H∂Ωn(pn(y))) det(dTn) dy .
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Definition

Let f ∈ C 0(D). We consider v∂Ω the solution of the equation

∆∂Ωv∂Ω(x) = f (x) in ∂Ω,

v∂Ω is the unique minimiser of

E∂Ω : H1
∗(∂Ω) 3 u 7→ 1

2

ˆ
∂Ω

|∇∂Ωu(x)|2dµ∂Ω −
ˆ
∂Ω

f (x)u(x)dµ∂Ω (1)

Lemma

For any Ω ∈ Or0 , Eq. (1) admits one and only one minimiser.
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F (Ω) =

ˆ
∂Ω

j(x , ν(x), v∂Ω(x),∇∂Ωv∂Ω(x)) dµ∂Ω(x),

where j : Rd × Sd−1 × R× Rd → R is assumed to be continuous.

Theorem (Privat-R-Sigalotti, 2022)

The shape functional F is lower-semicontinuous for the R-convergence, i.e., for
every sequence (Ωn)n∈N ∈ ON

r0
that R-converges toward Ω∞, one has

lim inf
n→+∞

F (Ωn) ≥ F (Ω∞). (2)

As a consequence, the shape optimization problem

inf
Ω∈Or0

F (Ω)

has a solution.
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1 Transport v∂Ωn to ∂Ω∞ thanks to the orthogonal projector on ∂Ωn

2 The sequence obtained is bounded H1
∗(∂Ω∞), extract and called

v∗ ∈ H1
∗(∂Ω∞) the limit.

3 Check that v∗ = v∂Ω∞ .

4 Passing to the limit is similar to the previous case.
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R. Robin (LJLL, Sorbonne Université) Existence of surfaces optimizing geometric and PDE shape functionals under reach constraintJune 2nd, 2022 23 / 27



Table of Contents

1 Introduction

2 Signed distance

3 A new framework

4 A PDE on the hypersurface

5 Conclusion
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Conclusion

Hypersurfaces with a uniform Reach condition enjoy nice properties:

Sequential compactness for the R-convergence.

Many functionals involving geometric or PDE related cost are
lower-semicontinuous for the R-convergence.

Proofs are (relatively) straightforward.

Thank you for your attention!
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