Existence of surfaces optimizing geometric and PDE shape functionals under reach constraint In collaboration with Yannick Privat¹ and Mario Sigalotti²

Rémi Robin,

Laboratoire Jacques-Louis Lions, Sorbonne Université, Paris, France

June 2nd, 2022

¹Université de Strasbourg ²Inria Paris

R. Robin (LJLL, Sorbonne Université)

Existence of surfaces optimizing geometric and PDE sł

4 A PDE on the hypersurface

・ロト ・日下・ ・ ヨト・

Table of Contents

1 Introduction

- 2 Signed distance
- 3 A new framework
- 4 A PDE on the hypersurface
 - 5 Conclusion

For Ω regular enough,

$$F(\Omega) = \int_{\partial\Omega} j(x, \nu_{\partial\Omega}(x), B_{\partial\Omega}(x)) \, d\mu_{\partial\Omega}(x),$$

- $\nu_{\partial\Omega}$ is the normal outward vector,
- B_{∂Ω}(x) is either a geometric quantity (mean curvature, Gauss curvature ...) or the solution of a PDE defined on Ω or ∂Ω.

For Ω regular enough,

$$F(\Omega) = \int_{\partial\Omega} j(x, \nu_{\partial\Omega}(x), B_{\partial\Omega}(x)) \, d\mu_{\partial\Omega}(x),$$

- $\nu_{\partial\Omega}$ is the normal outward vector,
- B_{∂Ω}(x) is either a geometric quantity (mean curvature, Gauss curvature ...) or the solution of a PDE defined on Ω or ∂Ω.

Existence of minimisers

Can we find $\Omega^* \in \mathcal{O}_{\mathsf{adm}}$ such that

$$F(\Omega^*) = \inf_{\Omega \in \mathcal{O}_{adm}} F(\Omega)?$$

・ロト ・四ト ・ヨト ・ヨト

Uniform ball property

 $\Omega \in \mathscr{O}_{r_0}$ if an only if $\Omega \subset D$ compact, $\forall x \in \partial \Omega$,

 $\exists d_x \in \mathbb{R}^n \mid \|d_x\|_{\mathbb{R}^d} = 1, \ B_{r_0}(x - r_0 d_x) \subset \Omega \text{ and } B_{r_0}(x + r_0 d_x) \subset \mathbb{R}^n \backslash \Omega.$

Figure taken from [Dal18].

Existing results

Theorem (Guo-Yang, 2013)

Let j be a continuous function from $\mathbb{R}^d \times S^{d-1}$ to \mathbb{R} , then the following optimization problem

$$\inf_{\Omega\in\mathscr{O}_{r_0}}\int_{\partial\Omega}j(x,\nu(x))d\mu_{\partial\Omega}(x)$$

admits a minimiser.

Theorem (Dalphin, 2018)

Let j be a continuous function from $\mathbb{R}^d \times S^{d-1} \times \mathbb{R}$ and convex with respect to the last variable, then the following optimization problem

$$\inf_{\Omega\in\mathscr{O}_{r_0}}\int_{\partial\Omega}j(x,\nu(x),H_{\partial\Omega}(x))d\mu_{\partial\Omega}(x)$$

admits a minimiser.

ヘロト 人間 ト 人 田 ト 人

Let $h \in L^2(D)$, $g \in H^2(D)$, and define u_{Ω} as the solution of

$$\left\{ \begin{array}{ll} \Delta u_{\Omega} = h & ext{in } \Omega, \\ u_{\Omega} = g & ext{in } \partial \Omega. \end{array} \right.$$

Theorem (Dalphin, 2020)

Let j be a continuous function from $\mathbb{R}^d \times S^{d-1} \times \mathbb{R} \times \mathbb{R}^d$, then the following optimization problem

$$\inf_{\Omega\in\mathscr{O}_{r_0}}\int_{\partial\Omega}j(x,\nu(x),u_{\Omega}(x),\nabla u_{\Omega}(x))\,d\mu_{\partial\Omega}(x)$$

admits a minimiser.

The direct method of calculus of variations

• Define a (sequential) topology on \mathcal{O}_{r_0} .

ヘロト ヘロト ヘビト

- **O** Define a (sequential) topology on \mathcal{O}_{r_0} .
- I Take a minimizing sequence and use a compactness result

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Define a (sequential) topology on \mathcal{O}_{r_0} .
- I Take a minimizing sequence and use a compactness result
- Prove the lower-semicontinuity of the functional

Table of Contents

1 Introduction

2 Signed distance

3 A new framework

4 PDE on the hypersurface

5 Conclusion

э.

・ロト ・日 ・ ・ ヨト ・

Distances functions

$$d_{\Omega}(x) = \inf_{y \in \Omega} \|x - y\|$$

$$b_{\Omega}(x) = d_{\Omega}(x) - d_{\mathbb{R}^d \setminus \Omega}(x)$$

Some properties

- For $x \in \partial \Omega$, $\nabla b_{\Omega}(x)$ is the unit outward normal vector,
- For $x \in \partial \Omega$, $Tr(\nabla^2 b_{\Omega}(x))$ is the mean curvature,
- etc.

Definition

 $\operatorname{Reach}(\Omega) = \sup\{h > 0 \mid d_{\Omega} \text{ is differentiable in } U_h(\Omega) \setminus \Omega\}.$

Assume $\text{Reach}(\partial \Omega) = r_0 > 0$, we have

- if $\mathcal{H}^d(\partial\Omega) = 0$, then $\partial\Omega$ is a $\mathscr{C}^{1,1}$ hypersurface of \mathbb{R}^d and satisfies the uniform ball property.
- For $h < r_0$, ∇b_{Ω} is $\frac{2}{r_0 h}$ -Lipschitz continuous on the tubular neighborhood $U_h(\partial \Omega)$.
- The restriction of ∇b_{Ω} to $\partial \Omega$ is $\frac{1}{m}$ -Lipschitz continuous.

Introduction

- 2 Signed distance
- 3 A new framework
- A PDE on the hypersurface

5 Conclusion

R-convergence in \mathcal{O}_{r_0}

Given $(\Omega_n)_{n\in\mathbb{N}}\in\mathscr{O}_{r_0}^{\mathbb{N}}$, we say that $(\Omega_n)_{n\in\mathbb{N}}$ *R*-converges to $\Omega_\infty\in\mathscr{O}_{r_0}$ and we write $\Omega_n\xrightarrow{R}\Omega_\infty$ if

$$b_{\Omega_n} o b_{\Omega_{\infty}} \quad \begin{cases} \text{in } \mathscr{C}(\overline{D}), \\ \text{in } \mathscr{C}^{1,lpha}(U_r(\partial\Omega_{\infty})), \, orall r < r_0, \, orall lpha \in [0,1), \\ ext{weakly-star in } W^{2,\infty}(U_r(\partial\Omega_{\infty})), \, orall r < r_0 \end{cases}$$

Theorem

 \mathcal{O}_{r_0} is sequentially compact for the *R*-convergence.

For $0 < h < r_0$, consider

$$T_{\partial\Omega}: (-h,h) imes \partial\Omega \to U_h(\partial\Omega) \ (t,x) \mapsto x + t
abla b_\Omega(x).$$

Since $T_{\partial\Omega}$ is Lipschitz continuous, it is differentiable at almost every (t_0, x_0) , with

$$d_{(t_0,x_0)} T_{\partial\Omega}(s,y) = y + s
abla b_\Omega(x_0) + t_0 d_{x_0}
abla b_\Omega(y), \qquad orall (s,y) \in \mathbb{R} imes T_{x_0} \partial\Omega.$$

Lemma

For every $\varepsilon > 0$, there exists h > 0 such that for all $\Omega \in \mathscr{O}_{r_0}$,

 $1-\varepsilon \leq \det(\textit{d}_{(t_0,x_0)}\textit{T}_{\partial\Omega}) \leq 1+\varepsilon, \quad \textit{for a.e. } (t_0,x_0) \in (-h,h) \times \partial\Omega.$

Lemma

If $\Omega_n \xrightarrow{R} \Omega_\infty$ then

- $\mathcal{H}^{d-1}(\partial\Omega_n)$ converges toward $\mathcal{H}^{d-1}(\partial\Omega_\infty)$ as $n \to +\infty$.
- $\ \, {\mathcal O} \ \, {\mathcal H}^d(\Omega_n) \ \, {\rm converges} \ \, {\rm toward} \ \, {\mathcal H}^d(\Omega_\infty) \ \, {\rm as} \ n \to +\infty.$
- **(a)** If all the $\partial \Omega_n$ belong to the same isotopic class, then $\partial \Omega_\infty$ also belongs such a class.

Corollary

$$\{\Omega \in \mathscr{O}_{r_0} \mid a \leq \mathcal{H}^{d-1}(\partial \Omega) \leq b, \, \partial \Omega \text{ is isotopic to } \partial \Omega_0\}$$

is sequentially compact

$$\mathcal{H}^{d-1}(\partial\Omega_n) = \int_{\partial\Omega_n} d\mu_{\partial\Omega_n}(x) = \frac{1}{2h} \int_{U_h(\partial\Omega_n)} \det(dT_n) \, dy$$
$$= \frac{1}{2h} \int_{U_{h-t}(\partial\Omega_\infty)} \det(dT_n) \, dy + \frac{1}{2h} \int_{U_h(\partial\Omega_n) \setminus U_{h-t}(\partial\Omega_\infty)} \det(dT_n) \, dy$$
$$\mathcal{H}^{d-1}(\partial\Omega_\infty) = \frac{1}{2(h-t)} \int_{U_{h-t}(\partial\Omega_\infty)} \det(dT_\infty) \, dy$$

・ロト ・四ト ・ヨト ・ヨト 三日

$$\begin{aligned} \mathcal{H}^{d-1}(\partial\Omega_n) &= \int_{\partial\Omega_n} d\mu_{\partial\Omega_n}(x) = \frac{1}{2h} \int_{U_h(\partial\Omega_n)} \det(dT_n) \, dy \\ &= \frac{1}{2h} \int_{U_{h-t}(\partial\Omega_\infty)} \det(dT_n) \, dy + \frac{1}{2h} \int_{U_h(\partial\Omega_n) \setminus U_{h-t}(\partial\Omega_\infty)} \det(dT_n) \, dy \\ \mathcal{H}^{d-1}(\partial\Omega_\infty) &= \frac{1}{2(h-t)} \int_{U_{h-t}(\partial\Omega_\infty)} \det(dT_\infty) \, dy \end{aligned}$$

For any h, t small enough, there exists N_0 such that for all $n \ge N_0$,

$$\mathcal{H}^{d-1}(\partial\Omega_n) = \left(\mathcal{H}^{d-1}(\partial\Omega_\infty) + O(h)\right) \left(1 + O\left(\frac{t}{h}\right)\right) + \left(o_{h\to 0}(1) + O\left(\frac{t}{h}\right)\right)$$

・ロト ・日 ・ ・ ヨト ・

Let j be a continuous function from $\mathbb{R}^d \times S^{d-1} \times \mathbb{R}$ and convex with respect to the last variable.

$$F(\Omega) = \int_{\partial\Omega} j(x, \nu(x), H_{\partial\Omega}(x)) d\mu_{\partial\Omega}(x)$$

Theorem

F is a lower-semicontinuous shape functional for the *R*-convergence, i.e., for every sequence $(\Omega_n)_{n\in\mathbb{N}} \in \mathscr{O}_{r_0}^{\mathbb{N}}$ that *R*-converges toward Ω_{∞} , one has

 $\liminf_{n\to+\infty}F(\Omega_n)\geq F(\Omega_\infty).$

As a consequence, the shape optimization problem

 $\inf_{\Omega\in \mathscr{O}_{r_0}}F(\Omega)$

has a solution.

イロト イ団ト イヨト イヨト

$$\begin{split} F(\Omega_n) &= \int_{\partial\Omega_n} j(x, \nabla b_{\Omega_n}(x), H_{\partial\Omega_n}(p_n(y))) d\mu_{\partial\Omega_n}(x) \\ &= \frac{1}{2h} \int_{U_h(\partial\Omega_n)} j(p_n(y), \nabla b_{\Omega_n}(p_n(y)), H_{\partial\Omega_n}(p_n(y))) \det(d_{T_n^{-1}(y)}T_n) dy. \end{split}$$

$$\begin{split} F(\Omega_n) = & \frac{1}{2h} \int_{U_{h-t}(\partial\Omega_\infty)} j(p_n(y), \nabla b_{\Omega_n}(p_n(y)), H_{\partial\Omega_n}(p_n(y))) \, \det(dT_n) \, dy \\ &+ \frac{1}{2h} \int_{U_h(\partial\Omega_n) \setminus U_{h-t}(\partial\Omega_\infty)} j(p_n(y), \nabla b_{\Omega_n}(p_n(y)), H_{\partial\Omega_n}(p_n(y))) \, \det(dT_n) \, dy. \end{split}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ の < ⊙

Introduction

- 2 Signed distance
- 3 A new framework
- A PDE on the hypersurface

5 Conclusion

-

・ロト ・日 ・ ・ ヨト ・

Let $f \in \mathscr{C}^0(D)$. We consider $v_{\partial\Omega}$ the solution of the equation

 $\Delta_{\partial\Omega}v_{\partial\Omega}(x)=f(x)\quad\text{ in }\partial\Omega,$

< □ > < □ > < □ > < □ > < □ >

Let $f \in \mathscr{C}^0(D)$. We consider $v_{\partial\Omega}$ the solution of the equation

$$\Delta_{\partial\Omega}v_{\partial\Omega}(x) = f(x)$$
 in $\partial\Omega$,

 $v_{\partial\Omega}$ is the unique minimiser of

$$\mathscr{E}_{\partial\Omega}: H^1_*(\partial\Omega) \ni u \mapsto \frac{1}{2} \int_{\partial\Omega} |\nabla_{\partial\Omega} u(x)|^2 d\mu_{\partial\Omega} - \int_{\partial\Omega} f(x) u(x) d\mu_{\partial\Omega}$$
(1)

Lemma

For any $\Omega \in \mathscr{O}_{r_0}$, Eq. (1) admits one and only one minimiser.

$$F(\Omega) = \int_{\partial\Omega} j(x, \nu(x), v_{\partial\Omega}(x), \nabla_{\partial\Omega} v_{\partial\Omega}(x)) \, d\mu_{\partial\Omega}(x),$$

where $j: \mathbb{R}^d \times \mathcal{S}^{d-1} \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ is assumed to be continuous.

Theorem (Privat-R-Sigalotti, 2022)

The shape functional F is lower-semicontinuous for the R-convergence, i.e., for every sequence $(\Omega_n)_{n\in\mathbb{N}} \in \mathscr{O}_{r_0}^{\mathbb{N}}$ that R-converges toward Ω_{∞} , one has

$$\liminf_{n \to +\infty} F(\Omega_n) \ge F(\Omega_\infty). \tag{2}$$

< D > < P > < P > <</pre>

As a consequence, the shape optimization problem

$$\inf_{\Omega\in \mathscr{O}_{r_0}}F(\Omega)$$

has a solution.

• Transport $v_{\partial\Omega_n}$ to $\partial\Omega_\infty$ thanks to the orthogonal projector on $\partial\Omega_n$

- **1** Transport $v_{\partial\Omega_n}$ to $\partial\Omega_\infty$ thanks to the orthogonal projector on $\partial\Omega_n$
- The sequence obtained is bounded H¹_{*}(∂Ω_∞), extract and called v^{*} ∈ H¹_{*}(∂Ω_∞) the limit.

- **1** Transport $v_{\partial\Omega_n}$ to $\partial\Omega_\infty$ thanks to the orthogonal projector on $\partial\Omega_n$
- Observe the sequence obtained is bounded H¹_{*}(∂Ω_∞), extract and called v^{*} ∈ H¹_{*}(∂Ω_∞) the limit.
- 3 Check that $v^* = v_{\partial \Omega_{\infty}}$.

- **1** Transport $v_{\partial\Omega_n}$ to $\partial\Omega_\infty$ thanks to the orthogonal projector on $\partial\Omega_n$
- Observe the sequence obtained is bounded H¹_{*}(∂Ω_∞), extract and called v^{*} ∈ H¹_{*}(∂Ω_∞) the limit.
- 3 Check that $v^* = v_{\partial \Omega_{\infty}}$.
- Passing to the limit is similar to the previous case.

1 Introduction

- 2 Signed distance
- 3 A new framework
- 4 PDE on the hypersurface

5 Conclusion

Hypersurfaces with a uniform Reach condition enjoy nice properties:

- Sequential compactness for the *R*-convergence.
- Many functionals involving geometric or PDE related cost are lower-semicontinuous for the *R*-convergence.
- Proofs are (relatively) straightforward.

• • • • • • • • • • • •

Hypersurfaces with a uniform Reach condition enjoy nice properties:

- Sequential compactness for the *R*-convergence.
- Many functionals involving geometric or PDE related cost are lower-semicontinuous for the *R*-convergence.
- Proofs are (relatively) straightforward.

Thank you for your attention!

< 口 > < 同 > < 三 > <

- J. Dalphin. "Uniform ball property and existence of optimal shapes for a wide class of geometric functionals". In: *Interfaces Free Bound*. 20.2 (2018).
- J. Dalphin. "Existence of optimal shapes under a uniform ball condition for geometric functionals involving boundary value problems". In: *ESAIM Control Optim. Calc. Var.* 26 (2020).
- M. C. Delfour and J.-P. Zolésio. *Shapes and geometries*. Second. Vol. 22. Advances in Design and Control. Metrics, analysis, differential calculus, and optimization. 2011.
- B.-Z. Guo and D.-H. Yang. "On convergence of boundary Hausdorff measure and application to a boundary shape optimization problem". In: *SIAM J. Control Optim.* 51.1 (2013).
- Y. Privat, R. Robin, and M. Sigalotti. "Optimal Shape of Stellarators for Magnetic Confinement Fusion". In: J. Math. Pures Appl. (9) (2022).
- Y. Privat, R. Robin, and M. Sigalotti. Existence of surfaces optimizing geometric and PDE shape functionals under reach constraint. soon.

[Dal20] [GY13] [DZ11] [PRSon] [PRS22]

< □ > < □ > < □ > < □ > < □ >